[Abraham, C. & Michie, S. (2008). A taxonomy of behavior change techniques used in interventions. Health Psychology, 27 (3), 379–387.10.1037/0278-6133.27.3.379]Search in Google Scholar
[ACSM (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43 (7), 1334-1359.]Search in Google Scholar
[Ainsworth, B. E., Haskell, W. L., Leon, A. S., Jacobs, J. D., Montoye, H. J., Sallis, J. F., & Paffenbarger, J. R. (1993). Compendium of physical activities: Classification of energy costs of human physical activities. Medicine and science in sports and exercise, 25 (1), 71-80.10.1249/00005768-199301000-00011]Search in Google Scholar
[Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50 (2), 179-211.10.1016/0749-5978(91)90020-T]Search in Google Scholar
[Arain, M., Campbell, M. J., Cooper, C. L., & Lancaster, G. A. (2010). What is a pilot or feasibility study? A review of current practice and editorial policy. BMC medical research methodology, 10 (1), 67.10.1186/1471-2288-10-67291292020637084]Search in Google Scholar
[Arem, H., Moore, S. C., Patel, A., Hartge, P., De Gonzalez, A. B., Visvanathan, K., ... & Linet, M. S. (2015). Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA internal medicine, 175 (6), 959-967.10.1001/jamainternmed.2015.0533445143525844730]Search in Google Scholar
[Atkinson, G., & Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports medicine, 26 (4), 217-238.10.2165/00007256-199826040-000029820922]Search in Google Scholar
[Baca, A. (2015). Data acquisition and processing. In A. Baca (ed.), Computer Science in Sport: Research and practice (pp.46-81). London: Routledge.]Search in Google Scholar
[Bandura, A. (1999). A social cognitive theory of personality. In L. Pervin & O. John (Ed.), Handbook of personality (2nd ed., pp. 154-196). New York: Guilford Publications.]Search in Google Scholar
[Batacan, R. B., Duncan, M. J., Dalbo, V. J., Tucker, P. S., & Fenning, A. S. (2017). Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. British Journal of Sports Medicine, 51(6), 494-503.10.1136/bjsports-2015-09584127797726]Search in Google Scholar
[Battenberg, A. K., Donohoe, S., Robertson, N., & Schmalzried, T. P. (2017). The accuracy of personal activity monitoring devices. Seminars in Arthroplasty, 28 (2), 71-75.10.1053/j.sart.2017.07.006]Search in Google Scholar
[Bender, C. G., Hoffstot, J. C., Combs, B. T., Hooshangi, S., & Cappos, J. (2017). Measuring the fitness of fitness trackers. In Sensors Applications Symposium (SAS), 2017 IEEE (pp. 1-6). New York, NY: IEEE.]Search in Google Scholar
[Bert, F., Giacometti, M., Gualano, M. R., & Siliquini, R. (2014). Smartphones and health promotion: A review of the evidence. Journal of medical systems, 38 (1), 1-11.10.1007/s10916-013-9995-724346929]Search in Google Scholar
[Bevan, N., Carter, J., Earthy, J., Geis, T., & Harker, S. (2016). New ISO standards for usability, usability reports and usability measures. In International Conference on Human-Computer Interaction (pp. 268-278). Cham: Springer.]Search in Google Scholar
[Bondaronek, P., Alkhaldi, G., Slee, A., Hamilton, F. L., & Murray, E. (2018). Quality of publicly available physical activity apps: Review and content analysis. JMIR mHealth and uHealth, 6(3), e53.10.2196/mhealth.9069588506229563080]Search in Google Scholar
[Borg, G. (1998). Borg´s perceived exertion and pain scales. Champaign, II.: Human Kinetics.]Search in Google Scholar
[Case, M. A., Burwick, H. A., Volpp, K. G., & Patel, M. S. (2015). Accuracy of smartphone applications and wearable devices for tracking physical activity data. Journal of the American Medical Association, 313 (6), 625-626.10.1001/jama.2014.1784125668268]Search in Google Scholar
[Casey, M., Hayes, P. S., Glynn, F., ÓLaighin, G., Heaney, D., Murphy, A. W., & Glynn, L. G. (2014). Patients’ experiences of using a smartphone application to increase physical activity: The SMART MOVE qualitative study in primary care. British Journal of General Practice, 64 (625), e500-e508.10.3399/bjgp14X680989411134325071063]Search in Google Scholar
[Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public health reports, 100 (2), 126.]Search in Google Scholar
[Champion, V. L. & Skinner, C. S. (2008). The health belief model. In K. Glanz, B.K. Rimer & K. Viswanath (eds.), Health behavior and health education: Theory, research, and practice (pp. 45-65). San Francisco, CA: Wiley.]Search in Google Scholar
[Chi-Wai, R. K., Sai-Chuen, S. H., So-Ning, T. M., Ka-Shun, P. W., Wing-Kuen, K. L., & Choi-Ki, C. W. (2011). Can mobile virtual fitness apps replace human fitness trainer? In The 5th International Conference on New Trends in Information Science and Service Science (Vol. 1, pp. 56-63). New York, NY: IEEE.]Search in Google Scholar
[Conroy, D. E., Yang, C. H., & Maher, J. P. (2014). Behavior change techniques in top-ranked mobile apps for physical activity. American journal of preventive medicine, 46 (6), 649-652.10.1016/j.amepre.2014.01.01024842742]Search in Google Scholar
[Derbyshire, E. & Dancey, D. (2013). Smartphone medical applications for women’s health: What is the evidence-base and feedback? International journal of telemedicine and applications, Article ID 782074.10.1155/2013/782074388069424454354]Search in Google Scholar
[Direito, A., Dale, L. P., Shields, E., Dobson, R., Whittaker, R., & Maddison, R. (2014). Do physical activity and dietary smartphone applications incorporate evidence-based behaviour change techniques? BMC Public Health, 14 (646), 1-7.10.1186/1471-2458-14-646408069324965805]Search in Google Scholar
[Donabedian, A. (1988). The quality of care: How can it be assessed? JAMA, 260, 1743-1748.10.1001/jama.260.12.17433045356]Search in Google Scholar
[Dowd, K. P., Szeklicki, R., Minetto, M. A., Murphy, M. H., Polito, A., Ghigo, E., ... & Tomczak, M. (2018). A systematic literature review of reviews on techniques for physical activity measurement in adults: a DEDIPAC study. International Journal of Behavioral Nutrition and Physical Activity, 15 (1), 15.10.1186/s12966-017-0636-2580627129422051]Search in Google Scholar
[Düking, P., Fuss, F. K., Holmberg, H. C., & Sperlich, B. (2018). Recommendations for assessment of the reliability, sensitivity, and validity of data provided by wearable sensors designed for monitoring physical activity. JMIR mHealth and uHealth, 6 (4), e102.10.2196/mhealth.9341595211929712629]Search in Google Scholar
[Fanning, J., Mullen, S. P., & McAuley, E. (2012). Increasing physical activity with mobile devices: A meta-analysis. Journal of medical Internet research, 14(6).10.2196/jmir.2171351484723171838]Search in Google Scholar
[Farrow, D., & Robertson, S. (2017). Development of a skill acquisition periodisation framework for high-performance sport. Sports Medicine, 47 (6), 1043–1054.10.1007/s40279-016-0646-227873190]Search in Google Scholar
[Fereidooni, H., Classen, J., Spink, T., Patras, P., Miettinen, M., Sadeghi, A. R., Hollick, M., & Conti, M. (2017). Breaking fitness records without moving: Reverse engineering and spoofing fitbit. In International Symposium on Research in Attacks, Intrusions, and Defenses (pp. 48-69). Cham: Springer.]Search in Google Scholar
[Fokkema, T., Kooiman, T. J., Krijnen, W. P., Schans, C. P. van der, & Groot, M. de (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Medicine and science in sports and exercise, 49 (4), 793-800.10.1249/MSS.000000000000114628319983]Search in Google Scholar
[Fritz, T., Huang, E. M., Murphy, G. C., & Zimmermann, T. (2014,). Persuasive technology in the real world: A study of long-term use of activity sensing devices for fitness. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 487-496). New York, NY: ACM.10.1145/2556288.2557383]Search in Google Scholar
[Fröhlich, M., Müller, F., Schmidtbleicher, D. & Emrich, E. (2009). Outcome-Effekte verschiedener Periodisierungsmodelle im Krafttraining. Deutsche Zeitschrift für Sportmedizin, 60 (10), 307-314.]Search in Google Scholar
[Fuchs, R., Goehner, W., & Seelig, H. (2011). Long-term effects of a psychological group intervention on physical exercise and health: The MoVo concept. Journal of Physical Activity and Health, 8 (6), 794-803.10.1123/jpah.8.6.79421832294]Search in Google Scholar
[Fuchs, R., Seelig, H., Göhner, W., Burton, N. W., & Brown, W. J. (2012). Cognitive mediation of intervention effects on physical exercise: Causal models for the adoption and maintenance stage. Psychology & health, 27 (12), 1480-1499.10.1080/08870446.2012.69502022715966]Search in Google Scholar
[Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., Fahad, H.M., Ota, H., Shiraki, H., Kiriya, D., Lien, D.-H., Brooks, G.A., Davis, R.W., & Javey, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529 (7587), 509.10.1038/nature16521499607926819044]Search in Google Scholar
[Gibson, A. L., Wagner, D., & Heyward, V. (2018). Advanced Fitness Assessment and Exercise Prescription (8th edition). Champaign, Ill.: Human kinetics.]Search in Google Scholar
[Guissard, N., Duchateau, J. & Hainaut, K. (1988). Muscle stretching and motoneuron excitability. European Journal of Applied Physiology, 58, 47-52.10.1007/BF006366023203674]Search in Google Scholar
[Guyatt, G., Oxman, A. D., Akl, E. A., Kunz, R., Vist, G., Brozek, J., Susan Norris, S., Falck-Ytter, Y., Glasziou, P., deBeer, H., Jaeschke, R., Rind, D., Meerpohl, J., Dahm, P., & Schünemann, H. J. (2011). GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. Journal of clinical epidemiology, 64 (4), 383-394.]Search in Google Scholar
[Hagger, M. S. & Chatzisarantis, N. L. (2014). An integrated behavior change model for physical activity. Exercise and Sport Sciences Reviews, 42 (2), 62-69.10.1249/JES.000000000000000824508739]Search in Google Scholar
[Halson, S. L., Peake, J. M., & Sullivan, J. P. (2016). Wearable technology for athletes: Information overload and pseudoscience? International Journal of Sports Physiology and Performance, 11, 705-706.10.1123/IJSPP.2016-048627701967]Search in Google Scholar
[He, Y., & Li, Y. (2013). Physical Activity Recognition Utilizing the Built-In Kinematic Sensors of a Smartphone. International Journal of Distributed Sensor Networks, 2013, Article ID 481580.10.1155/2013/481580]Search in Google Scholar
[Heckhausen, H. (1989). Motivation und Handeln (2nd ed.). [Motivation and action] Berlin: Springer.10.1007/978-3-662-08870-8]Search in Google Scholar
[Hecksteden, A., Faude, O., Meyer, T., & Donath, L. (2018). How to construct, conduct and analyze an exercise training study? Frontiers in physiology, 9, 1007.10.3389/fphys.2018.01007609497530140237]Search in Google Scholar
[Heikenfeld, J., Jajack, A., Rogers, J., Gutruf, P., Tian, L., Pan, T., Li, R., Khine, M., Kim, J., Wang, J., & Kim, J. (2018). Wearable sensors: Modalities, challenges, and prospects. Lab on a Chip, 18 (2), 217-248.10.1039/C7LC00914C577184129182185]Search in Google Scholar
[Helmerhorst, H. H. J., Brage, S., Warren, J., Besson, H., & Ekelund, U. (2012). A systematic review of reliability and objective criterion-related validity of physical activity questionnaires. International Journal of Behavioral Nutrition and Physical Activity, 9 (1), 103.10.1186/1479-5868-9-103349215822938557]Search in Google Scholar
[Higgins, J. P. & Altman, D. G. (2008). Assessing risk of bias in included studies. In J.P. Higgins & S. Green (eds.), Cochrane handbook for systematic reviews of interventions: Cochrane book series (pp. 187-241). Chichester: Wiley-Blackwell.]Search in Google Scholar
[Higgins, J.P. & Green, S. (eds.). (2008). Cochrane handbook for systematic reviews of interventions: Cochrane book series. Chichester: Wiley-Blackwell.10.1002/9780470712184]Search in Google Scholar
[Ho, C. L., Fu, Y. C., Lin, M. C., Chan, S. C., Hwang, B., & Jan, S. L. (2014). Smartphone applications (apps) for heart rate measurement in children: Comparison with electrocardiography monitor. Pediatric cardiology, 35 (4), 726-731.10.1007/s00246-013-0844-824259012]Search in Google Scholar
[Hohmann, A., Lames, M. & Letzelter, M. (2002). Einführung in die Trainingswissenschaft. [Introduction to training science] Wiebelsheim: Limpert.]Search in Google Scholar
[Janssen, I., & LeBlanc, A. G. (2010). Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. International journal of behavioral nutrition and physical activity, 7 (1), 40.10.1186/1479-5868-7-40288531220459784]Search in Google Scholar
[Kari, T., Koivunen, S., Frank, L., Makkonen, M., & Moilanen, P. (2016). Critical experiences during the implementation of a self-tracking technology. In PACIS 2016: Proceedings of the 20th Pacific Asia Conference on Information Systems (pp. 129-144). Association for Information Systems. Retrieved from http://aisel.aisnet.org/pacis2016/129/]Search in Google Scholar
[Kari, T. & Rinne, P. (2018). Influence of digital coaching on physical activity: Motivation and behaviour of physically inactive individuals. In A. Pucihar, M. Kljajič, P. Ravesteijn, J. Seitz, & R. Bons (Eds.), Bled 2018: Proceedings of the 31th Bled eConference. Digital Transformation: Meeting the Challenges (pp. 127-145). Maribor: University of Maribor Press.]Search in Google Scholar
[Kassal, P., Steinberg, M. D., & Steinberg, I. M. (2018). Wireless chemical sensors and biosensors: A review. Sensors and Actuators B: Chemical, 266, 228.]Search in Google Scholar
[Kellmann, M. & Kallus, K. W. (2001). Recovery-stress questionnaire for athletes: User manual (Vol. 1). Champaign, Il.: Human Kinetics.]Search in Google Scholar
[Kellmann, M., Bertollo, M., Bosquet, L., Brink, M., Coutts, A. J., Duffield, R., ... & Kallus, K. W. (2018). Recovery and performance in sport: consensus statement. International journal of sports physiology and performance, 13 (2), 240-245.10.1123/ijspp.2017-075929345524]Search in Google Scholar
[Kendzierski, D. & DeCarlo, K. J. (1991). Physical activity enjoyment scale: Two validation studies. Journal of sport and exercise psychology, 13 (1), 50-64.10.1123/jsep.13.1.50]Search in Google Scholar
[Kettunen, E., Critchley, W., & Kari, T. (2019). Can digital coaching boost your performance? A qualitative study among physically active people. In Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS 2019) (pp. 1331-1340). University of Hawai’i at Manoa. Retrieved April 4, 2019 from http://hdl.handle.net/10125/5957410.24251/HICSS.2019.163]Search in Google Scholar
[Kettunen, E. & Kari, T. (2018). Can sport and wellness technology be my personal trainer? Teenagers and digital coaching. In A. Pucihar, M. Kljajič, P. Ravesteijn, J. Seitz, & R. Bons (Eds.), Bled 2018: Proceedings of the 31th Bled eConference. Digital Transformation: Meeting the Challenges (pp. 463-476). Maribor: University of Maribor Press.]Search in Google Scholar
[Khaylis, A., Yiaslas, T., Bergstrom, J., & Gore-Felton, C. (2010). A review of efficacious technology-based weight-loss interventions: five key components. Telemedicine and e-Health, 16 (9), 931-938.10.1089/tmj.2010.0065300090021091286]Search in Google Scholar
[King, A. C., Hekler, E. B., Grieco, L. A., Winter, S. J., Sheats, J. L., Buman, M. P., ... & Cirimele, J. (2016). Effects of three motivationally targeted mobile device applications on initial physical activity and sedentary behavior change in midlife and older adults: a randomized trial. PloS one, 11(6), e0156370.10.1371/journal.pone.0156370492483827352250]Search in Google Scholar
[Knight, E., Stuckey, M. I., Prapavessis, H., & Petrella, R. J. (2015). Public health guidelines for physical activity: Is there an app for that? A review of android and apple app stores. JMIR mHealth and uHealth, 3 (2).10.2196/mhealth.4003445648525998158]Search in Google Scholar
[Kooiman, T. J., Dontje, M. L., Sprenger, S. R., Krijnen, W. P., van der Schans, C. P., & de Groot, M. (2015). Reliability and validity of ten consumer activity trackers. BMC sports science, medicine and rehabilitation, 7 (1), 24.10.1186/s13102-015-0018-5460329626464801]Search in Google Scholar
[Kranz, M., Möller, A., Hammerla, N., Diewald, S., Plötz, T., Olivier, P., & Roalter, L. (2013). The mobile fitness coach: Towards individualized skill assessment using personalized mobile devices. Pervasive and Mobile Computing, 9 (2), 203-215.10.1016/j.pmcj.2012.06.002]Search in Google Scholar
[Kühberger, A., Fritz, A., Lermer, E., & Scherndl, T. (2015). The significance fallacy in inferential statistics. BMC research notes, 8 (1), 84.10.1186/s13104-015-1020-4437706825888971]Search in Google Scholar
[Lachman, M. E., Lipsitz, L., Lubben, J., Castaneda-Sceppa, C., & Jette, A. M. (2018). When adults don’t exercise: Behavioral strategies to increase physical activity in sedentary middle-aged and older adults. Innovation in aging, 2(1), igy007.10.1093/geroni/igy007603704730003146]Search in Google Scholar
[Lallemand, C., Gronier, G., & Koenig, V. (2015). User experience: A concept without consensus? Exploring practitioners’ perspectives through an international survey. Computers in Human Behavior, 43, 35-48.10.1016/j.chb.2014.10.048]Search in Google Scholar
[Lang, K. M., & Little, T. D. (2018). Principled missing data treatments. Prevention Science, 19(3), 284-294.10.1007/s11121-016-0644-527040106]Search in Google Scholar
[Leunes, A. & Burger, J. (2000). Profile of mood states research in sport and exercise psychology: Past, present, and future. Journal of applied sport psychology, 12 (1), 5-15.10.1080/10413200008404210]Search in Google Scholar
[Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS medicine, 6 (7), e1000100.10.1371/journal.pmed.1000100270701019621070]Search in Google Scholar
[Ludwig, M., Hoffmann, K., Endler, S., Asteroth, A., & Wiemeyer, J. (2018). Measurement, prediction, and control of individual heart rate responses to exercise—Basics and options for wearable devices. Frontiers in physiology, 9, 778.10.3389/fphys.2018.00778602688429988588]Search in Google Scholar
[Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical therapy, 83(8), 713-721.10.1093/ptj/83.8.713]Search in Google Scholar
[Marshall, S. J. & Biddle, S. J. (2001). The transtheoretical model of behavior change: A meta-analysis of applications to physical activity and exercise. Annals of behavioral medicine, 23 (4), 229-246.10.1207/S15324796ABM2304_211761340]Search in Google Scholar
[Mateo, G. F., Granado-Font, E., Ferré-Grau, C., & Montaña-Carreras, X. (2015). Mobile phone apps to promote weight loss and increase physical activity: A systematic review and meta-analysis. Journal of medical Internet research, 17 (11), e253.]Search in Google Scholar
[Matthews, J., Win, K. T., Oinas-Kukkonen, H., & Freeman, M. (2016). Persuasive technology in mobile applications promoting physical activity: A systematic review. Journal of medical systems, 40 (3), 72.10.1007/s10916-015-0425-x26748792]Search in Google Scholar
[McCoy, C. E. (2017). Understanding the intention-to-treat principle in randomized controlled trials. Western Journal of Emergency Medicine, 18 (6), 1075.10.5811/westjem.2017.8.35985565487729085540]Search in Google Scholar
[McKay, F. H., Cheng, C., Wright, A., Shill, J., Stephens, H., & Uccellini, M. (2018). Evaluating mobile phone applications for health behaviour change: A systematic review. Journal of telemedicine and telecare, 24 (1), 22-30.10.1177/1357633X1667353827760883]Search in Google Scholar
[McKay, F. H., Slykerman, S., & Dunn, M. (2019). The App Behavior Change Scale: Creation of a scale to assess the potential of apps to promote behavior change. JMIR mHealth and uHealth, 7 (1), e11130.10.2196/11130636767030681967]Search in Google Scholar
[Mentler, T. & Herczeg, M. (2013). Applying ISO 9241-110 dialogue principles to tablet applications in emergency medical services. In Proceedings of the 10th International ISCRAM Conference – Baden-Baden, Germany, May 2013 (pp.502-506). Baden-Baden: ISCRAM (http://www.iscram.org/content/iscram2013-academic-papers)]Search in Google Scholar
[Michie, S., Ashford, S., Sniehotta, F. F., Dombrowski, S. U., Bishop, A., & French, D. P. (2011). A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: The CALO-RE taxonomy. Psychology & Health, 26 (11), 1479-1498.10.1080/08870446.2010.54066421678185]Search in Google Scholar
[Michie, S., Richardson, M., Johnston, M., Abraham, C., Francis, J., Hardeman, W., Eccles, M. P., Cane, J., & Wood, C. E. (2013). The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Annals of behavioral medicine, 46 (1), 81-95.10.1007/s12160-013-9486-623512568]Search in Google Scholar
[Mukhopadhyay, S. C. (2015). Wearable sensors for human activity monitoring: A review. IEEE sensors journal, 15 (3), 1321-1330.10.1109/JSEN.2014.2370945]Search in Google Scholar
[Munson, S.A. & Consolvo, S. (2012). Exploring goal-setting, rewards, self-monitoring, and sharing to motivate physical activity. In 2012 6th international conference on pervasive computing technologies for healthcare (pervasive health) and workshops (pp. 25-32). New York, NY: IEEE.]Search in Google Scholar
[Oinas-Kukkonen, H. & Harjumaa, M. (2009). Persuasive systems design: Key issues, process model and system features. Communications of the Association for Information Systems, 24 (1), 28.10.17705/1CAIS.02428]Search in Google Scholar
[O’Donovan, G., Blazevich, A. J., Boreham, C., Cooper, A. R., Crank, H., Ekelund, U., ... & Hamer, M. (2010). The ABC of Physical Activity for Health: a consensus statement from the British Association of Sport and Exercise Sciences. Journal of sports sciences, 28(6), 573-591.10.1080/0264041100367121220401789]Search in Google Scholar
[O’Reilly, G. A. & Spruijt-Metz, D. (2013). Current mHealth technologies for physical activity assessment and promotion. American journal of preventive medicine, 45 (4), 501-507.10.1016/j.amepre.2013.05.012419982724050427]Search in Google Scholar
[Paz, F. & Pow-Sang, J. A. (2016). A systematic mapping review of usability evaluation methods for software development process. International Journal of Software Engineering and Its Applications, 10 (1), 165-178.10.14257/ijseia.2016.10.1.16]Search in Google Scholar
[Peake, J. M., Kerr, G., & Sullivan, J. P. (2018). A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Frontiers in physiology, 9, 743.10.3389/fphys.2018.00743603174630002629]Search in Google Scholar
[Pelletier, L. G., Tuson, K. M., Fortier, M. S., Vallerand, R. J., Briere, N. M., & Blais, M. R. (1995). Toward a new measure of intrinsic motivation, extrinsic motivation, and amotivation in sports: The Sport Motivation Scale (SMS). Journal of sport and Exercise Psychology, 17 (1), 35-53.10.1123/jsep.17.1.35]Search in Google Scholar
[Plonczynski, D. J. (2000). Measurement of motivation for exercise. Health Education Research, 15(6), 695-705.10.1093/her/15.6.69511142077]Search in Google Scholar
[Poitras, V. J., Gray, C. E., Borghese, M. M., Carson, V., Chaput, J. P., Janssen, I., Katzmarzyk, P. T., Pate, R. R., Gorber, S. C., Kho, M. E., Sampson, M., & Tremblay, M.S. (2016). Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Applied Physiology, Nutrition, and Metabolism, 41 (6), S197-S239.10.1139/apnm-2015-066327306431]Search in Google Scholar
[Preuschl, E., Baca, A., Novatchkov, H., Kornfeind, P., Bichler, S., & Boecskoer, M. (2010). Mobile motion advisor – A feedback system for physical exercise in schools. Procedia Engineering, 2 (2), 2741-2747.10.1016/j.proeng.2010.04.060]Search in Google Scholar
[Prochaska, JO, Redding, CA, & Evers, K. (2008). The transtheoretical model and stages of change. In K. Glanz, F.M. Lewis, & B.K. Rimer (Eds.), Health behavior and health education (4th ed., pp.97-121). San Francisco: Jossey-Bass.]Search in Google Scholar
[Reilly, J. J., Penpraze, V., Hislop, J., Davies, G., Grant, S., & Paton, J. Y. (2008). Objective measurement of physical activity and sedentary behaviour: review with new data. Archives of disease in childhood, 93 (7), 614-619.10.1136/adc.2007.13327218305072]Search in Google Scholar
[Rhea, C. K., Felsberg, D. T., & Maher, J. P. (2018). Toward Evidence-Based Smartphone Apps to Enhance Human Health: Adoption of Behavior Change Techniques. American Journal of Health Education, 49(4), 210-213.10.1080/19325037.2018.1473177]Search in Google Scholar
[Roda, A., Michelini, E., Zangheri, M., Di Fusco, M., Calabria, D., & Simoni, P. (2016). Smartphone-based biosensors: A critical review and perspectives. TrAC Trends in Analytical Chemistry, 79, 317-325.10.1016/j.trac.2015.10.019]Search in Google Scholar
[Romeo, A., Edney, S., Plotnikoff, R., Curtis, R., Ryan, J., Sanders, I., ... & Maher, C. (2019). Can Smartphone Apps Increase Physical Activity? Systematic Review and Meta-Analysis. Journal of medical Internet research, 21 (3), e12053.10.2196/12053644421230888321]Search in Google Scholar
[Rose, S. & Laan, M. J. van der (2009). Why match? Investigating matched case-control study designs with causal effect estimation. The international journal of biostatistics, 5 (1), Article 1.10.2202/1557-4679.1127282789220231866]Search in Google Scholar
[Ryan, R. M. & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55 (1), 68-78.10.1037/0003-066X.55.1.68]Search in Google Scholar
[Schmidt, B., Benchea, S., Eichin, R., & Meurisch, C. (2015). Fitness tracker or digital personal coach: How to personalize training. In Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers (pp. 1063-1067). New York, NY: ACM.]Search in Google Scholar
[Shameli, A., Althoff, T., Saberi, A., & Leskovec, J. (2017). How gamification affects physical activity: Large-scale analysis of walking challenges in a mobile application. In Proceedings of the 26th International Conference on World Wide Web Companion (pp. 455-463). Geneva: International World Wide Web Conferences Steering Committee.]Search in Google Scholar
[Shea, B. J., Hamel, C., Wells, G. A., Bouter, L. M., Kristjansson, E., Grimshaw, J., Henry, D.A., & Boers, M. (2009). AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. Journal of clinical epidemiology, 62 (10), 1013-1020.10.1016/j.jclinepi.2008.10.00919230606]Search in Google Scholar
[Stephens, J., & Allen, J. (2013). Mobile phone interventions to increase physical activity and reduce weight: A systematic review. The Journal of cardiovascular nursing, 28 (4), 320.10.1097/JCN.0b013e318250a3e7368180422635061]Search in Google Scholar
[Tang, L. M., Day, M., Engelen, L., Poronnik, P., Bauman, A., & Kay, J. (2016). Daily & hourly adherence: Towards understanding activity tracker accuracy. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 3211-3218). New York, NY: ACM.]Search in Google Scholar
[Tang, L. M. & Kay, J. (2017). Harnessing long term physical activity data – How long-term trackers use data and how an adherence-based interface supports new insights. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1 (2), Article 26.10.1145/3090091]Search in Google Scholar
[Teixeira, P. J., Carraça, E. V., Markland, D., Silva, M. N., & Ryan, R. M. (2012). Exercise, physical activity, and self-determination theory: A systematic review. International journal of behavioral nutrition and physical activity, 9 (1), 78.10.1186/1479-5868-9-78344178322726453]Search in Google Scholar
[Toigo, M., & Boutellier, U. (2006). New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. European journal of applied physiology, 97 (6), 643-663.10.1007/s00421-006-0238-116845551]Search in Google Scholar
[Wackerhage, H., Schoenfeld, B. J., Hamilton, D. L., Lehti, M., & Hulmi, J. J. (2018). Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. Journal of Applied Physiology, 126 (1), 30-43.]Search in Google Scholar
[Wagner, P. (2000). Aussteigen oder Dabeibleiben? [Get off or stay?] Darmstadt: WBG.]Search in Google Scholar
[Wahl, Y., Düking, P., Droszez, A., Wahl, P., & Mester, J. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Frontiers in physiology, 8, 725.10.3389/fphys.2017.00725561530429018355]Search in Google Scholar
[Wang, J. B., Cataldo, J. K., Ayala, G. X., Natarajan, L., Cadmus-Bertram, L. A., White, M. M., Madanat, H., Nichols, J. F., & Pierce, J. P. (2016). Mobile and wearable device features that matter in promoting physical activity. Journal of mobile technology in medicine, 5 (2), 2-11.10.7309/jmtm.5.2.2496900327493694]Search in Google Scholar
[Warraich, M. U. (2016). Wellness routines with wearable activity trackers: A systematic review. In MCIS 2016 Proceedings (Article 35). Paphos, Cyprus: http://aisel.aisnet.org/mcis2016/.]Search in Google Scholar
[Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of personality and social psychology, 54 (6), 1063-1070.10.1037/0022-3514.54.6.1063]Search in Google Scholar
[WHO (2010). Global recommendations on physical activity for health. Geneva: WHO.]Search in Google Scholar
[WHO (2018). More active people for a healthier world. Global action plan on physical activity 2018-2030. Geneva: WHO.]Search in Google Scholar
[Wiemeyer, J. (2018). Fitness Apps – Was erwarten die User? [Fitness apps – What are the users’ expectations?] In D. Link, A. Hermann, M. Lames & V. Senner (eds.), Sportinformatik XII (pp. 90-91). Hamburg: Feldhaus-Czwalina.]Search in Google Scholar
[Wiemeyer, J., Hatzky, W., Henrich, J. & Seelert, P. (2016). Modern – Mobil – Motivierend = Effektiver & Effizienter? Eine kritische Analyse ausgewählter mobiler Trainings-Applikationen. [Modern – mobile – motivating = more effective and more efficient? A critical analysis of selected applications for mobile training] In K. Witte & J. Edelmann-Nusser (eds.), Sportinformatik XI. (pp.29-34). Aachen: Shaker.]Search in Google Scholar
[Williams, S. L. & French, D. P. (2011). What are the most effective intervention techniques for changing physical activity self-efficacy and physical activity behaviour – and are they the same? Health Education Research, 26 (2), 308-322.10.1093/her/cyr00521321008]Search in Google Scholar
[Wong, C., Zhang, Z. Q., Lo, B., & Yang, G. Z. (2015). Wearable sensing for solid biomechanics: A review. IEEE Sensors Journal, 15 (5), 2747-2760.]Search in Google Scholar
[Yang, C. H., Maher, J. P., & Conroy, D. E. (2015). Implementation of behavior change techniques in mobile applications for physical activity. American journal of preventive medicine, 48 (4), 452-455.10.1016/j.amepre.2014.10.01025576494]Search in Google Scholar
[Yang, R., Shin, E., Newman, M. W., & Ackerman, M. S. (2015). When fitness trackers don’t ‘fit’: End-user difficulties in the assessment of personal tracking device accuracy. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 623-634). New York, NY: ACM.]Search in Google Scholar
[Zhou, M., Fukuoka, Y., Mintz, Y., Goldberg, K., Kaminsky, P., Flowers, E., & Oi, A. (2018). Evaluating machine learning–based automated personalized daily step goals delivered through a mobile phone app: Randomized controlled trial. JMIR mHealth and uHealth, 6 (1), e28.10.2196/mhealth.9117580600629371177]Search in Google Scholar