1. bookVolume 74 (2020): Issue 1 (August 2020)
Journal Details
License
Format
Journal
First Published
13 Jan 2009
Publication timeframe
5 times per year
Languages
English
access type Open Access

Effects of Short-Term Core Stability Training on Dynamic Balance and Trunk Muscle Endurance in Novice Olympic Weightlifters

Published Online: 31 Aug 2020
Page range: 43 - 50
Journal Details
License
Format
Journal
First Published
13 Jan 2009
Publication timeframe
5 times per year
Languages
English
Abstract

Our primary objective was to investigate the effects of short-term core stability training on dynamic balance and trunk muscle endurance in novice weightlifters learning the technique of the Olympic lifts. Our secondary objective was to compare dynamic balance and trunk muscle endurance between novice and experienced weightlifters. Thirty novice (NOV) and five experienced (EXP) weightlifters participated in the study. Mediolateral (ML) and anteroposterior (AP) dynamic balance and trunk muscle endurance testing were performed a week before (Pre) and after (Post) a 4-week core stability training program. In the NOV group, there was an improvement of both dynamic balance (ML and AP, p = 0.0002) and trunk muscle endurance (p = 0.0002). In the EXP group, there was no significant difference between Pre and Post testing conditions, except an increase in muscle endurance in the right-side plank (p = 0.0486). Analysis of the results showed that experienced lifters were characterized by more effective dynamic balance and greater core muscle endurance than their novice peers, not only before the training program but after its completion as well. In conclusion, the applied short-term core stability training improved dynamic balance and trunk muscle endurance in novice weightlifters learning the Olympic lifts. Such an exercise program can be incorporated into a training regime of novice weightlifters to prepare them for technically difficult tasks of the Olympic snatch and clean and jerk.

Key words

Introduction

Olympic weightlifting exercises such as the clean and jerk, and the snatch are commonly incorporated into training programs as they allow athletes to generate high forces at high velocities, thus increasing power (Hori et al., 2005). Yet, the Olympic lifts are very complex and contain a high degree of technical difficulty (Winwood et al., 2015). These exercises require also greater core stability and overall dynamic body balance (Bryanton and Bilodeau, 2019).

The core is important in providing local strength and balance and is central to almost all kinetic chains of athletic activity (Szafraniec et al., 2018a). Core stability exercises activate specific motor patterns of the trunk muscles by challenging spinal stability and trunk postural control (Kavcic et al., 2004), therefore they have become popular for enhancing sports performance and injury prevention (Kellis et al., 2020). Common core stability exercises include the abdominal drawing-in maneuver and quadruped arm lifts (Akuthota et al., 2008). These exercises recruit deep muscles of the spine such as the lumbar multifidus and abdominal muscles such as the transversus abdominis, obliques and rectus abdominis (McGill, 2001). Strong abdominals and lower back muscles are crucial in providing the most solid position for a weight that is being lifted, and it should be a priority for long-term success and health of the weightlifter (Keogh et al., 2010; Zouita et al., 2019; Maszczyk e al., 2020).

Dynamic balance is one of the most important motor skills and is defined as the ability to perform a task while maintaining or regaining a stable position (Maszczyk et al., 2018, 2019), or the ability to maintain or regain balance on an unstable surface with minimal extraneous motion (Hrysomallis, 2011; Szafraniec et al., 2018b). Improving the dynamic balance can improve the overall physical performance in most sports, such as judo, gymnastics, weightlifting, etc. The use of free-weights during resistance training imposes greater mechanical demands on the body due to the center of mass of the total system being further away (higher) from the base of support, and in turn challenge postural stability (Granacher and Gollhofer, 2011). In other words, powerlifters and Olympic weightlifters need to develop skillful control of body posture via contraction of large agonists and stabilizers. In turn, this may improve their ability to control their COP about the base of support, also during dynamic tasks (Bryanton and Bilodeau, 2019).

Although initially used by competitive weightlifters, Olympic-style lifts have become increasingly common in the conditioning programs of athletes from different sport disciplines (Moore and Quintero, 2019). When implementing this type of exercise into the training program, we should be aware, however, that inadequate conditioning, lack of strength or endurance, loss of balance and poor technique can increase the risk of injury, which are most frequently located in the knee, lower back and shoulder (Keogh and Winwood, 2017). That's why, an adequate level of dynamic balance and trunk muscle strength and endurance, seems to be crucial when preparing novice weightlifters for Olympic-style lifts. The question remains, what is the adequate level of fitness to safely perform the Olympic lifts. To the best of our knowledge, there are no guidelines or norms related to the level of core stability sufficient for practicing Olympic weightlifting safely. There are also no specific recommendations on the time necessary to build trunk muscle endurance or dynamic balance before implementing exercises such as the clean or the snatch into a training program.

Consequently, our primary objective was to investigate the effects of short-term core stability training on dynamic balance and trunk muscle endurance in novice weightlifters preparing for the acquisitions of the technique of the Olympic lifts. Our secondary objective was to compare dynamic balance and trunk muscle endurance between novice and experienced weightlifters.

Methods

Thirty novice (NOV) and five experienced (EXP) weightlifters at the age of 26–30 years with no balance impairments were recruited to participate in the investigation (Table 1). The EXP group was comprised of weightlifters who train using free-weights for a minimum of three times per week, with a minimum of three years of consistent resistance training experience. The NOV group included healthy male individuals recruited with no prior experience in resistance training with free-weights. The study was approved by the Commission for Ethics of Scientific Research at the University School of Physical Education in Wroclaw. All participants provided their written informed consent after receiving verbal and written information.

Participants characteristics.

NOV (n = 30)EXP (n = 5)Groups comparison (p value)
Age (years)31.5 ± 1.730.4 ± 4.70.5244
Body mass (kg)77.9 ± 10.283.6 ± 6.80.2417
Height (cm)178.9 ± 6.1181.0 ± 4.60.4695
BMI24.4 ± 2.925.5 ± 1.00.3994
Procedures

All participants were required to attend two separate testing sessions. During the initial session (Pre), they signed an informed consent, anthropometric variables (height, mass, age) were collected and dynamic balance and muscle endurance testing was performed. The second session (Post) was conducted 1 week after the completion of the training program. During the second session, the participants performed dynamic balance and muscle endurance testing.

Dynamic balance assessment

Mediolateral (ML) and anteroposterior (AP) dynamic balance was measured using the stabilometric platform (Libra; EasyTech, Salerno, Italy). The Libra platform is an electronic oscillating balance board that measures mediolateral or anteroposterior tilt from −15º to +15º to an accuracy of 1º. It was connected to a computer with dedicated software. Testing was performed in a quiet, well-lit, temperature-controlled room to minimize external distractions. The participant stood barefoot on the balance board and was monitored by personnel for safety precautions in case of loss of balance. Feet were parallel and the upper limbs rested freely along the trunk. Also, the participants kept their knees extended throughout the test to exclude the effects of the knee joint on maintaining balance. The task was to maintain balance on the device for 30 s. In each plane (ML and AP in random order) two trials were performed and the better result was considered for further analysis. Rest intervals between successive attempts were set at 60 s.

Dynamic balance was quantified based on the total area of sway registered during the 30-s trial (Figure 1). The total area of sway (TA) is the area created by sway line amplitude that deviated from the centerline (°s) (Szafraniec et al., 2018b).

Figure 1

Sample comparison chart of two balance tests.

Trunk muscle endurance assessment

To assess the global core muscle endurance, a plank test was used. Participants held a basic plank position – a prone bridge supported by the forearms and feet. Elbows were vertically below the shoulders with the forearms and fingers extending straight forward. The neck was kept neutral so that the body remained straight from the head to the heels (Tong et al., 2014).

The assessment of the internal and external oblique muscles was performed by following a side-bridge plank test. The subjects were instructed to lay on one side and place their top foot on top of the lower foot. Subjects were instructed to support themselves with only their elbow, forearm, and foot. Their hips were then raised off the floor and their body held in a straight position. The non-supporting arm was held across their chest with the hand placed on the opposite shoulder. After a 1-min rest interval, the subject repeated the side-bridge plank test on the opposite side (Myrick et al., 2019).

The endurance of the erector spinae (multifidus) muscle was assessed by a trunk extension test (a modified Biering-Sorensen test). Subjects were instructed to lay prone on a padded table with the upper body unsupported and extended off the edge of the table. Their legs and buttocks were fixed to the table with straps. The arms were folded across the chest with each hand resting upon the opposite shoulder. The test commenced when the subject’s upper body was parallel to the floor and terminated when the subject was unable to keep their upper body from dropping below the horizontal position (Keogh et al., 2010).

In all tests, time until exhaustion (or failure) was recorded.

Core stability training

The planned core stability training aimed to prepare the subjects for incorporating the Olympic lifts for their training regime. The training program consisted of 8 training sessions (50 min × twice a week × 4 weeks). A single workout included 18 core stability exercises. The applied exercises targeted the abdominal muscles (transversus abdominis, obliques, and rectus abdominis), lumbar multifidus, quadratus lumborum, and gluteal muscles, which are the main stabilizers of the spine and are responsible for controlling the pelvis and trunk positioning (Szafraniec et al., 2018a). The training program included the abdominal drawing-in maneuver, quadruped arm lifts and stability ball exercises.

Statistical analysis

All data are presented as mean ± SD. Normal distribution of the data was examined using the Kolmogorov-Smirnov normality test. Analyzing dynamic balance, initially mixed-model ANOVA, repeated-measures analysis with one between factor (group) and two within factors (time and plane) was conducted. There was no significant effect for planes and interactions: plane × time, plane × group; plane × time × group. Therefore the following analysis was performed for both planes separately. The same analysis was used for the functional test. We used a mixed-model ANOVA, repeated-measures analysis with one between factor (group; NOV and EXP) and one within factor (time; Pre and Post). Tukey’s post-hoc multiple comparison was performed if a significant main effect was observed. For each ANOVA, partial eta-squared was calculated as measures of effect size. Values of 0.01, 0.06, and above 0.14 were considered as small, medium, and large, respectively.

The statistical analyses were performed using Statistica 13.1 software (Dell, Round Rock, TX, USA). The significance level was set at p < 0.05.

Results
Dynamic balance

In the ML plane, mixed-model ANOVA showed a significant main effect for groups (F = 17.53, p = 0.0002, ηp2 = 0.35, observed power = 0.9) and time (F = 18.04, p = 0.0002, ηp2 = 0.35, observed power = 0.9) (Figure 2). Tukey’s test established a decrease of TA in the Post condition in the NOV group (Pre 104.4 ± 37.3 °s vs. Post 72.3 ± 26.9 °s; p = 0.0002), yet not in the EXP group (Pre 39.2 ± 12.1 °s vs. Post 23.1 ± 4.9 °s; p = 0.4295). There was a significant difference in TA between NOV and EXP both in the Pre (p = 0.0005) and Post (p = 0.0094) conditions.

Figure 2

Total area of sway in the mediolateral (A) and anteroposterior plane (B) measured before (Pre) and after (Post) the training program. T, time effects; G, group effects; I, interaction effects. * p < 0.001, significantly different from Pre. # p < 0.01, significantly different from EXP.

In the AP plane, statistical testing showed a significant main effect for groups (F = 12.21, p = 0.0014, ηp2 = 0.27, observed power = 0.9), time (F = 11.99, p = 0.0015, ηp2 = 0.27, observed power = 0.9) and group × time interaction (F = 5.54, p = 0.0248, ηp2 = 0.14, observed power = 0.6). In the Post condition TA significantly decreased in the NOV group (Pre 120.6 ± 50.5 °s vs. Post 67.0 ± 20.6 °s; p = 0.0002), but not in the EXP group (Pre 46.8 ± 8.9 °s vs. Post 36.6 ± 8.7 °s; p = 0.9316). There was a significant between-groups difference only in the Pre-condition (p = 0.0007).

Trunk muscle endurance

A significant group × time interaction was present for all functional tests (Figure 3). In the plank test (F = 22.43, p < 0.0001, ηp2 = 0.41, observed power = 1.0), muscle endurance increased only in the NOV group (Pre 56.4 ± 23.4 s vs. Post 115.4 ± 25.2 s; p = 0.0002). Participants in the EXP group were characterized by higher muscle endurance than subjects in the NOV group in Pre and Post conditions (p = 0.0002 and p = 0.0002, respectively). In the left-side plank (F = 11.45, p = 0.0019, ηp2 = 0.26, observed power = 0.9), the endurance was enhanced in the NOV group only (Pre 43.6 ± 20.6 s vs. Post 101.7 ± 27.8 s; p = 0.0002). The experienced weightlifters maintained a stable position during the left-side plank longer than the novice both in the Pre and Post condition (p = 0.0002 and p = 0.0002, respectively). In the right-side plank (F = 9.94, p = 0.0035, ηp2 = 0.24, observed power = 0.9), muscle endurance improved in the NOV (Pre 47.2 ± 17.4 s vs. Post 104.9 ± 23.3 s; p = 0.0002) and EXP group (Pre 170.0 ± 17.9 s vs. Post 195.6 ± 13.3 s; p = 0.0486). The experienced lifters reached better results in the right-side plank test than the novice ones in the Pre and Post condition (p = 0.0002 and p = 0.0002, respectively). In the trunk extension test (F = 10.56, p = 0.0027, ηp2 = 0.25, observed power = 0.9), muscle endurance increased only in the NOV group (Pre 60.0 ± 22.2 s vs. Post 115.9 ± 25.2 s; p = 0.0002). The participants from the EXP group were characterized by greater trunk erector endurance than subjects from the NOV group in the Pre and Post condition (p = 0.0002 and p = 0.0002, respectively).

Figure 3

Muscle endurance before (Pre) and after (Post) the training intervention measured with functional tests: plank (A), left-side plank (B), right-side plank (C) and trunk extension (D). T, time effects; G, group effects; I, interaction effects. * p < 0.001,

** p < 0.05 significantly different from Pre. # p < 0.001, significantly different from EXP.

Discussion

The primary objective of our study was to investigate the effects of short-term core stability training on dynamic balance and trunk muscle endurance in novice weightlifters preparing for Olympic lifts. The main findings are that the applied training program, which consisted of 8 training sessions, significantly improved both trunk muscle endurance and dynamic balance in the mediolateral and anteroposterior plane.

Our secondary objective was to compare dynamic balance and trunk muscle endurance between novice and experienced weightlifters. The results showed that experienced lifters were characterized by more effective dynamic balance and greater core muscle endurance than their novice peers, not only before the training intervention, but also after its completion.

In our previous study (Szafraniec et al., 2018a), we observed that a single bout of core stability exercises improved the control of body balance during closed-eyes quiet standing. This effect was evident at 30 minutes after exercise and remained for at least 24 hours later. Improvement of postural stability was limited to the ML plane, with no effects in the AP plane. Although the results may justify the use of core stability exercises in training, in general, many questions are still unanswered. It was difficult to explain why balance in the AP plane was unaffected by core stability exercises. We suspected that the single bout of exercises could be an insufficient training stimuli, or the balance task (quiet standing) was not sensitive enough to capture the changes. In the current study, we decided to apply a more difficult balance task (a balance board) and a short training program. The results indicate that in the NOV group the dynamic balance was improved in both planes. The results of our research are difficult to compare directly with the results of other authors, due to different methods of dynamic balance assessment. In our study, we used an electronic oscillating balance board, while other authors most often used the Star Excursion Balance Test (SEBT). However, Sandrey and Mitzel (2013) stated that the 6-week core-stabilization-training program (30 min × three times per week) resulted in a significant improvement in dynamic balance of high school track and field athletes. Similar results were obtained in high school soccer players after a 12-week training program (3 times per week) of trunk stabilization exercises (Imai et al., 2014b). Also, badminton players improved their dynamic balance, measured with the SEBT, after the 8-week core stability training (Hassan, 2017; Ozmen and Aydogmus, 2016). In turn, a 9-week core stability program (30 min × three times per week) improved dynamic balance measures in competitive collegiate dancers (Watson et al., 2017). The training program we used was the shortest of those presented above, but sufficient to provoke the improvement of dynamic balance in the group of NOV lifters. However, no improvement was registered in the EXP group. This may probably be due to two things. First of all, the training program was too short to observe adaptive changes in already trained athletes. Secondly, although these subjects have not previously performed exercises typically focused on core stability, the use of free weights during many years of training shaped this ability. This thesis can be confirmed by the research of Willardson et al. (2009), who compared core muscle activity during resistance exercises performed on stable ground vs. the BOSU Balance Trainer. Twelve trained weightlifters performed the back squat, deadlift, overhead press, and curl lifts on a stable and unstable surface with a load of 50% 1RM. The activity of the rectus abdominis, external oblique abdominis, transversus abdominis/internal oblique abdominis, and erector spinae muscles was assessed. There were no significant differences between the BOSU and stable conditions across all muscles and lifts examined. The authors concluded that each of the aforementioned lifts can be performed while standing on stable ground without losing the potential core muscle training benefits.

This conclusion may also explain the lack of improvement of trunk muscle endurance in the EXP group in our research. Only in case of the right-side plank, the endurance increased but the increment was on the verge of statistical significance (p = 0.0486). In such a small sample, statistical significance at this level should be considered uncertain. In the NOV group, trunk muscle endurance increased in all tests performed. Our results are in line with the findings of other authors (Hassan, 2017; Sandrey and Mitzel, 2013). Sandrey and Mitzel (2013) found a 160-250 % increase in trunk muscle endurance after a 6-week (18 sessions) core-stabilization training program in high school track and field athletes. In turn, Hassan (2017) noticed only a 22-33% improvement in trunk endurance after an 8-week (16 sessions) core stability training program in young male badminton players. In our study, we observed an increase in core endurance in the NOV group in the range of 93103%.

Our results show a significant difference in dynamic balance and core endurance between the NOV and the EXP group, both before and after the applied training program. This indicates that the 4-week (8 sessions) program was too short for the novices to approach experienced colleagues in respect to the examined abilities. Therefore, it seems reasonable to use core stability exercises for a longer time before starting Olympic weightlifting exercises. By improving dynamic balance and trunk muscle endurance, we can reduce the risk of injury when implementing technically difficult exercises with free weights, such as the clean or the snatch.

Limitations of the study are based mainly on the number of subjects enrolled in the EXP group and the selection of very experienced weightlifters to be compared with the novices. Currently, it seems to us more rational to choose into the EXP group subjects with a significantly shorter experience in Olympic weightlifting, e.g. 6 or 12 months (we qualified people with at least 3 years of experience). It would be worth adding to our research a group that performs other types of resistance exercises. This should be the direction of future research, which would allow to determine the possible priority of core stability training over other forms of strength training in shaping trunk muscle endurance and dynamic balance.

Conclusions

The applied short-term core stability training improved dynamic balance and trunk muscle endurance in novice weightlifters attempting to learn the Olympic lifts. Such a training program can be incorporated into a training regime of novice weightlifters to prepare them for technically difficult exercises using free weights.

Figure 1

Sample comparison chart of two balance tests.
Sample comparison chart of two balance tests.

Figure 2

Total area of sway in the mediolateral (A) and anteroposterior plane (B) measured before (Pre) and after (Post) the training program. T, time effects; G, group effects; I, interaction effects. * p < 0.001, significantly different from Pre. # p < 0.01, significantly different from EXP.
Total area of sway in the mediolateral (A) and anteroposterior plane (B) measured before (Pre) and after (Post) the training program. T, time effects; G, group effects; I, interaction effects. * p < 0.001, significantly different from Pre. # p < 0.01, significantly different from EXP.

Figure 3

Muscle endurance before (Pre) and after (Post) the training intervention measured with functional tests: plank (A), left-side plank (B), right-side plank (C) and trunk extension (D). T, time effects; G, group effects; I, interaction effects. * p < 0.001,** p < 0.05 significantly different from Pre. # p < 0.001, significantly different from EXP.
Muscle endurance before (Pre) and after (Post) the training intervention measured with functional tests: plank (A), left-side plank (B), right-side plank (C) and trunk extension (D). T, time effects; G, group effects; I, interaction effects. * p < 0.001,** p < 0.05 significantly different from Pre. # p < 0.001, significantly different from EXP.

Participants characteristics.

NOV (n = 30)EXP (n = 5)Groups comparison (p value)
Age (years)31.5 ± 1.730.4 ± 4.70.5244
Body mass (kg)77.9 ± 10.283.6 ± 6.80.2417
Height (cm)178.9 ± 6.1181.0 ± 4.60.4695
BMI24.4 ± 2.925.5 ± 1.00.3994

Akuthota, V., Ferreiro, A., Moore, T. and Fredericson, M. (2008) Core stability exercise principles. Current sports medicine reports 7, 39-44.AkuthotaV.FerreiroA.MooreT.FredericsonM.2008Core stability exercise principlesCurrent sports medicine reports73944Search in Google Scholar

Bryanton, M.A. and Bilodeau, M. (2019) The Effect of Vision and Surface Compliance on Balance in Untrained and Strength Athletes. Journal of motor behavior 51, 75-82.BryantonM.A.BilodeauM.2019The Effect of Vision and Surface Compliance on Balance in Untrained and Strength AthletesJournal of motor behavior517582Search in Google Scholar

Granacher, U. and Gollhofer, A. (2011) Is there an association between variables of postural control and strength in adolescents? The Journal of Strength & Conditioning Research 25, 1718-1725.GranacherU.GollhoferA.2011Is there an association between variables of postural control and strength in adolescents?The Journal of Strength & Conditioning Research2517181725Search in Google Scholar

Hassan, I. (2017) The effect of core stability training on dynamic balance and smash stroke performance in badminton players. International Journal of Sports Science and Physical Education 2, 44-52.HassanI.2017The effect of core stability training on dynamic balance and smash stroke performance in badminton playersInternational Journal of Sports Science and Physical Education24452Search in Google Scholar

Hori, N., Newton, R.U., Nosaka, K. and Stone, M.H. (2005) Weightlifting exercises enhance athletic performance that requires high-load speed strength. Strength and Conditioning Journal 24, 50.HoriN.NewtonR.U.NosakaK.StoneM.H.2005Weightlifting exercises enhance athletic performance that requires high-load speed strengthStrength and Conditioning Journal2450Search in Google Scholar

Hrysomallis, C. (2011) Balance ability and athletic performance. Sports medicine 41, 221-232.HrysomallisC.2011Balance ability and athletic performanceSports medicine41221232Search in Google Scholar

Imai, A., Kaneoka, K., Okubo, Y. and Shiraki, H. (2014b) Effects of two types of trunk exercises on balance and athletic performance in youth soccer players. International journal of sports physical therapy 9, 47.ImaiA.KaneokaK.OkuboY.ShirakiH.2014bEffects of two types of trunk exercises on balance and athletic performance in youth soccer playersInternational journal of sports physical therapy947Search in Google Scholar

Kavcic, N., Grenier, S. and McGill, S.M. (2004) Quantifying tissue loads and spine stability while performing commonly prescribed low back stabilization exercises. Spine 29, 2319-2329.KavcicN.GrenierS.McGillS.M.2004Quantifying tissue loads and spine stability while performing commonly prescribed low back stabilization exercisesSpine2923192329Search in Google Scholar

Kellis, E., Ellinoudis, A., Intziegianni, K. and Kofotolis, N. (2020) Muscle thickness during core stability exercises in children and adults. Journal of human kinetics 71, 131-144.KellisE.EllinoudisA.IntziegianniK.KofotolisN.2020Muscle thickness during core stability exercises in children and adultsJournal of human kinetics71131144Search in Google Scholar

Keogh, J.W., Aickin, S.E. and Oldham, A.R. (2010) Can common measures of core stability distinguish performance in a shoulder pressing task under stable and unstable conditions? The Journal of Strength & Conditioning Research 24, 422-429.KeoghJ.W.AickinS.E.OldhamA.R.2010Can common measures of core stability distinguish performance in a shoulder pressing task under stable and unstable conditions?The Journal of Strength & Conditioning Research24422429Search in Google Scholar

Keogh, J.W. and Winwood, P.W. (2017) The epidemiology of injuries across the weight-training sports. Sports medicine 47, 479-501.KeoghJ.W.WinwoodP.W.2017The epidemiology of injuries across the weight-training sportsSports medicine47479501Search in Google Scholar

Maszczyk, A., Gołaś, A., Pietraszewski, P., Kowalczyk, M., Cięszczyk, P., Kochanowicz, A., Smółka, W. and Zając, A. (2018) Neurofeedback for the enhancement of dynamic balance of judokas. Biology of sport 35(1): 99–102MaszczykA.GołaśA.PietraszewskiP.KowalczykM.CięszczykP.KochanowiczA.SmółkaW.ZającA.2018Neurofeedback for the enhancement of dynamic balance of judokasBiology of sport35199102Search in Google Scholar

Maszczyk A, Wilk M, Krzysztofik M, et al. The effects of resistance training experience on movement characteristics in the bench press exercise. Biol Sport, 2020; 37(1): 79-83.MaszczykAWilkMKrzysztofikMet alThe effects of resistance training experience on movement characteristics in the bench press exerciseBiol Sport20203717983Search in Google Scholar

Maszczyk A, Dobrakowski P, Żak M, et al. Differences in motivation during the bench press movement with progressive loads using EEG analysis. Biol Sport, 2019; 36(4): 351-356.MaszczykADobrakowskiPŻakMet alDifferences in motivation during the bench press movement with progressive loads using EEG analysisBiol Sport2019364351356Search in Google Scholar

McGill, S.M. (2001) Low back stability: from formal description to issues for performance and rehabilitation. Exercise and sport sciences reviews 29, 26-31.McGillS.M.2001Low back stability: from formal description to issues for performance and rehabilitationExercise and sport sciences reviews292631Search in Google Scholar

Moore, J.W. and Quintero, L.M. (2019) Comparing forward and backward chaining in teaching Olympic weightlifting. Journal of applied behavior analysis 52, 50-59.MooreJ.W.QuinteroL.M.2019Comparing forward and backward chaining in teaching Olympic weightliftingJournal of applied behavior analysis525059Search in Google Scholar

Myrick, K.M., Pallone, A.S., Feinn, R.S., Ford, K.M. and Garbalosa, J.C. (2019) Trunk Muscle Endurance, Flexibility, Stride Foot Balance, and Contralateral Trunk Lean in Collegiate Baseball Pitchers. The Journal of Strength & Conditioning Research 33, 2641-2647.MyrickK.M.PalloneA.S.FeinnR.S.FordK.M.GarbalosaJ.C.2019Trunk Muscle Endurance, Flexibility, Stride Foot Balance, and Contralateral Trunk Lean in Collegiate Baseball PitchersThe Journal of Strength & Conditioning Research3326412647Search in Google Scholar

Ozmen, T. and Aydogmus, M. (2016) Effect of core strength training on dynamic balance and agility in adolescent badminton players. Journal of bodywork and movement therapies 20, 565-570.OzmenT.AydogmusM.2016Effect of core strength training on dynamic balance and agility in adolescent badminton playersJournal of bodywork and movement therapies20565570Search in Google Scholar

Sandrey, M.A. and Mitzel, J.G. (2013) Improvement in dynamic balance and core endurance after a 6-week core-stability-training program in high school track and field athletes. Journal of sport rehabilitation 22, 264-271.SandreyM.A.MitzelJ.G.2013Improvement in dynamic balance and core endurance after a 6-week core-stability-training program in high school track and field athletesJournal of sport rehabilitation22264271Search in Google Scholar

Szafraniec, R., Baranska, J. and Kuczynski, M. (2018a) Acute effects of core stability exercises on balance control. Acta Bioeng Biomech 20, 145-151.SzafraniecR.BaranskaJ.KuczynskiM.2018aAcute effects of core stability exercises on balance controlActa Bioeng Biomech20145151Search in Google Scholar

Szafraniec, R., Chromik, K., Poborska, A. and Kawczyński, A. (2018b) Acute effects of contract-relax proprioceptive neuromuscular facilitation stretching of hip abductors and adductors on dynamic balance. PeerJ 6, e6108.SzafraniecR.ChromikK.PoborskaA.KawczyńskiA.2018bAcute effects of contract-relax proprioceptive neuromuscular facilitation stretching of hip abductors and adductors on dynamic balancePeer J6e6108Search in Google Scholar

Tong, T.K., Wu, S. and Nie, J. (2014) Sport-specific endurance plank test for evaluation of global core muscle function. Physical Therapy in Sport 15, 58-63.TongT.K.WuS.NieJ.2014Sport-specific endurance plank test for evaluation of global core muscle functionPhysical Therapy in Sport155863Search in Google Scholar

Watson, T., Graning, J., McPherson, S., Carter, E., Edwards, J., Melcher, I. and Burgess, T. (2017) Dance, balance and core muscle performance measures are improved following a 9-week core stabilization training program among competitive collegiate dancers. International journal of sports physical therapy 12, 25.WatsonT.GraningJ.McPhersonS.CarterE.EdwardsJ.MelcherI.BurgessT.2017Dance, balance and core muscle performance measures are improved following a 9-week core stabilization training program among competitive collegiate dancersInternational journal of sports physical therapy1225Search in Google Scholar

Willardson, J.M., Fontana, F.E. and Bressel, E. (2009) Effect of surface stability on core muscle activity for dynamic resistance exercises. International journal of sports physiology and performance 4, 97-109.WillardsonJ.M.FontanaF.E.BresselE.2009Effect of surface stability on core muscle activity for dynamic resistance exercisesInternational journal of sports physiology and performance497109Search in Google Scholar

Winwood, P.W., Cronin, J.B., Brown, S.R. and Keogh, J.W. (2015) A biomechanical analysis of the strongman log lift and comparison with weightlifting's clean and jerk. International Journal of Sports Science & Coaching 10, 869-886.WinwoodP.W.CroninJ.B.BrownS.R.KeoghJ.W.2015A biomechanical analysis of the strongman log lift and comparison with weightlifting's clean and jerkInternational Journal of Sports Science & Coaching10869886Search in Google Scholar

Zouita, A.B.M., Zouita, S., Dziri, C., Brughelli, M., Behm, D.G. and Chaouachi, A. (2019) Differences in Trunk Strength Between Weightlifters and Wrestlers. Journal of human kinetics 67, 5-15.ZouitaA.B.M.ZouitaS.DziriC.BrughelliM.BehmD.G.ChaouachiA.2019Differences in Trunk Strength Between Weightlifters and WrestlersJournal of human kinetics67515Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo