[1. Adamczak A, Dreger M, Seidler-Łożykowska K, Wielgus K. Fireweed (Epilobium angustifolium L.): botany, phytochemistry and traditional uses. A review. Herba Pol 2019; 65(3):51-63. doi: http://dx.doi.org/10.2478/hepo-2019-001810.2478/hepo-2019-0018]Search in Google Scholar
[2. European Medicines Agency (EMA). Committee on Herbal Medicinal Products. Assessment report on Epilobium angustifolium L. and/or Epilobium parviflorum Schreb., herba. 2015. http://www.ema.europa.eu/en/documents/herbal-summary/willow-herb-summary-public_en.pdf. Accessed 10 January 2020.]Search in Google Scholar
[3. Thorpe A, Neal D. Benign prostatic hyperplasia. Lancet 2003; 361:1359-1367. doi: http://dx.doi.org/10.1016/S0140-6736(03)13073-510.1016/S0140-6736(03)13073-5]Search in Google Scholar
[4. Allkanjari O, Vitalone A. What do we know about phytotherapy of benign prostatic hyperplasia? Life Sci J 2015; 126:42-56. doi: http://dx.doi.org/10.1016/j.lfs.2015.01.02310.1016/j.lfs.2015.01.02325703069]Search in Google Scholar
[5. Granica S, Piwowarski JP, Czerwińska ME, Kiss AK. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. J Ethnopharmacol 2014; 156:316-346. doi: http://dx.doi.org/10.1016/j.jep.2014.08.03610.1016/j.jep.2014.08.03625196824]Search in Google Scholar
[6. Schepetkin IA, Ramstead AG, Kirpotina LN, Voyich JM, Jutila MA, Quinn MT. Therapeutic potential of polyphenols from Epilobium angustifolium (fireweed). Phytother Res 2016; 30(8):1287-1297. doi: http://dx.doi.org/10.1002/ptr.564810.1002/ptr.5648504589527215200]Search in Google Scholar
[7. Yoshida T, Yoshimura M, Amakura Y. Chemical and biological significance of oenothein B and related ellagitannin oligomers with macrocyclic structure. Molecules 2018; 23(3):552. doi: http://dx.doi.org/10.3390/molecules2303055210.3390/molecules23030552601708329498647]Search in Google Scholar
[8. Ismail T, Calcabrini C, Diaz AR, Fimognari C, Turrini E, Cantazaro E et al. Ellagitannins in cancer chemoprevention and therapy. Toxins 2016; 8(5):151. doi: http://dx.doi.org/10.3390/toxins805015110.3390/toxins8050151488506627187472]Search in Google Scholar
[9. Livingstone TL, Beasy G, Mills RD, Plumb J, Needs PW, Mithen R et al. Plant bioactives and the prevention of prostate cancer: Evidence from human studies. Nutrients 2019; 11(9):2245. doi: http://dx.doi.org/10.3390/nu1109224510.3390/nu11092245676999631540470]Search in Google Scholar
[10. Selma MV, González-Sarrías A, Salas-Salvadó J, Andrés-Lacueva C, Alasalvar C, Örem A et al. The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithinmetabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normo-weight, overweight-obesity and metabolic syndrome. Clin Nutr 2018; 37(3): 897-905. doi: http://dx.doi.org/10.1016/j.clnu.2017.03.01210.1016/j.clnu.2017.03.01228347564]Search in Google Scholar
[11. Peyrottes A, Seksik P, Doré J, Marteau P. The microbiome in IBD. In: Sheng Ding N, De Cruz P. (eds.). Biomarkers in inflammatory bowel diseases. Cham. Springer 2019: 293-301.10.1007/978-3-030-11446-6_24]Search in Google Scholar
[12. Hiermann A, Bucar F. Studies of Epilobium angustifolium extracts on growth of accessory sexual organs in rats. J Ethnopharmacol 1997; 55:1 79-183. doi: http://dx.doi.org/10.1016/S0378-8741(96)01498-510.1016/S0378-8741(96)01498-5]Search in Google Scholar
[13. Ducrey B, Marston A, Göhring S, Hartmann RW, Hostettmann K. Inhibition of 5α-reductase and aromatase by the ellagitannins oenothein A and oenothein B from Epilobium species. Plan-ta Med 1997; 63(2):111-114. doi: http://dx.doi.org/10.1055/s-2006-95762410.1055/s-2006-957624]Search in Google Scholar
[14. Lesuisse D, Berjonneau J, Ciot C, Devaux P, Doucet B, Gourvest JF et al. Determination of oenothein B as the active 5-α-reductase-inhibiting principle of the folk medicine Epilobium parviflorum. J Nat Prod 1996; 59(5):490-492. doi: http://dx.doi.org/10.1021/np960231c10.1021/np960231c]Search in Google Scholar
[15. Piwowarski JP, Bobrowska-Korczak B, Stanisławska I, Bielecki W, Wrzesień R, Granica S et al. Evaluation of the effect of Epilobium angus-tifolium aqueous extract on LNCaP cell proliferation in in vitro and in vivo models. Planta Med 2017; 83(14-15):1159-1168. doi: http://dx.doi.org/10.1055/s-0043-10937210.1055/s-0043-109372]Search in Google Scholar
[16. Deng L, Zong W, Tao X, Liu S, Feng Z, Lin Y et al. Evaluation of the therapeutic effect against benign prostatic hyperplasia and the active constituents from Epilobium angustifolium L. J Ethnopharmacol 2019; 232:1-10. doi: http://dx.doi.org/10.1016/j.jep.2018.11.04510.1016/j.jep.2018.11.045]Search in Google Scholar
[17. Vitalone A, Bordi F, Baldazzi C, Mazzanti G, Saso L, Tita B. Anti-proliferative effect on a prostatic epithelial cell line (PZ-HPV-7) by Epilobium angustifolium L. Farmaco 2001; 56(5-7):483-489. doi: http://dx.doi.org/10.1016/S0014-827X(01)01067-910.1016/S0014-827X(01)01067-9]Search in Google Scholar
[18. Vitalone A, McColl J, Thome D, Costa LG, Tita B. Characterization of the effect of Epilobium extracts on human cell proliferation. Pharmacology 2003; 69(2):79-87. doi: http://dx.doi.org/10.1159/00007236010.1159/00007236012928581]Search in Google Scholar
[19. Kiss A, Kowalski J, Melzig MF. Compounds from Epilobium angustifolium inhibit the specific metallopeptidases ACE, NEP and APN. Planta Med 2004; 70(10):919-923. doi: http://dx.doi.org/10.1055/s-2004-83261710.1055/s-2004-83261715490319]Search in Google Scholar
[20. Kiss A, Kowalski J, Melzig MF. Effect of Epilobium angustifolium L. extracts and polyphenols on cell proliferation and neutral endopeptidase activity in selected cell lines. Pharmazie 2006; 61(1):66-69.]Search in Google Scholar
[21. Kiss A, Kowalski J, Melzig MF. Induction of neutral endopeptidase activity in PC-3 cells by an aqueous extract of Epilobium angustifolium L. and oenothein B. Phytomedicine 2006; 13(4):284-289. doi: http://dx.doi.org/10.1016/j.phymed.2004.08.00210.1016/j.phymed.2004.08.00216492533]Search in Google Scholar
[22. Stolarczyk M, Piwowarski JP, Granica S, Stefańska J, Naruszewicz M, Kiss AK. Extracts from Epilobium sp. herbs, their components and gut microbiota metabolites of Epilobium ellagitannins, urolithins, inhibit hormone-dependent prostate cancer cells-(LNCaP) proliferation and PSA secretion. Phytother Res 2013; 27(12):1842-1848. doi: http://dx.doi.org/10.1002/ptr.494110.1002/ptr.494123436427]Search in Google Scholar
[23. Stolarczyk M, Naruszewicz M, Kiss AK. Extracts from Epilobium sp. herbs induce apoptosis in human hormone-dependent prostate cancer cells by activating the mitochondrial pathways. J Pharm Pharmacol 2013; 65(7):1044-1054. doi: http://dx.doi.org/10.1111/jphp.1206310.1111/jphp.1206323738732]Search in Google Scholar
[24. Schepetkin IA, Kirpotina LN, Jakiw L, Khlebnikov AI, Blaskovich CL, Jutila MA et al. Immunomodulatory activity of oenothein B isolated from Epilobium angustifolium. J Immunol 2009; 183(10):6754-6766. doi: http://dx.doi.org/10.4049/jimmunol.090182710.4049/jimmunol.0901827278354619846877]Search in Google Scholar
[25. Yoshimura M, Akiyama H, Kondo K, Sakata K, Matsuoka H, Amakura Y et al. Immunological effects of oenothein B, an ellagitannin dimer, on dendritic cells. Int J Mol Sci 2013; 14(1):46-56. doi: http://dx.doi.org/10.3390/ijms1401004610.3390/ijms14010046356525023344020]Search in Google Scholar
[26. Pei X, Xiao J, Wei G, Zhang Y, Lin F, Xiong Z et al. Oenothein B inhibits human non-small cell lung cancer A549 cell proliferation by ROS-mediated PI3K/Akt/NF-κB signaling pathway. Chem Biol Interact 2019; 298:112-120. doi: http://dx.doi.org/10.1016/j.cbi.2018.09.02110.1016/j.cbi.2018.09.02130452899]Search in Google Scholar
[27. Ostrovska H, Oleshchuk O, Vannini S, Cataldi S, Albi E, Codini M et al. Epilobium angustifolium L.: A medicinal plant with therapeutic properties. EuroBiotech J 2017; 1(2):126-131. doi: http://dx.doi.org/10.24190/ISSN2564-615X/2017/02.0310.24190/ISSN2564-615X/2017/02.03]Search in Google Scholar
[28. Maruška A, Ugenskienė R, Raulinaitytė D, Juozaitytė E, Kaškonienė V, Drevinskas T et al. Analysis of antiproliferative effect of Chamerion angustifolium water extract and its fractions on several breast cancer cell lines. Adv Med Sci 2017; 62(1):158-164. doi: http://dx.doi.org/10.1016/j.advms.2016.08.00210.1016/j.advms.2016.08.00228282602]Search in Google Scholar
[29. Shikov AN, Poltanov EA, Dorman HJD, Makarov VG, Tikhonov VP, Hiltunen R. Chemical composition and in vitro antioxidant evaluation of commercial water-soluble willow herb (Epilobium angustifolium L.) extracts. J Agric Food Chem 2006; 54(10):3617-3624. doi: http://dx.doi.org/10.1021/jf052606i10.1021/jf052606i19127734]Search in Google Scholar
[30. Štajner D, Popović BM, Boža P. Evaluation of willow herb’s (Epilobium angustofolium L.) antioxidant and radical scavenging capacities. Phytother Res 2007; 21(12):1242-1245. doi: http://dx.doi.org/10.1002/ptr.224410.1002/ptr.224417661326]Search in Google Scholar
[31. Hevesi TB, Blazics B, Kéry Á. Polyphenol composition and antioxidant capacity of Epilobium species. J Pharm Biomed Anal 2009; 49(1):26-31. doi: http://dx.doi.org/10.1016/j.jpba.2008.09.04710.1016/j.jpba.2008.09.04719013046]Search in Google Scholar
[32. Kiss AK, Bazylko A, Filipek A, Granica S, Jaszewska E, Kiarszys U et al. Oenothein B’s contribution to the anti-inflammatory and antioxidant activity of Epilobium sp. Phytomedicine 2011; 18(7):557-560. doi: http://dx.doi.org/10.1016/j.phymed.2010.10.01610.1016/j.phymed.2010.10.01621112753]Search in Google Scholar
[33. Kaškonienė V, Maruška A, Akuņeca I, Stankevičius M, Ragažinskienė O, Bartkuvienė V et al. Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub ecotypes grown in Lithuania. Nat Prod Res 2016; 30(12):1373-1381. doi: http://dx.doi.org/10.1080/14786419.2015.105879210.1080/14786419.2015.1058792]Search in Google Scholar
[34. Maruška A, Ragažinskienė O, Vyšniauskas O, Kaškonienė V, Bartkuvienė V, Kornyšova O et al. Flavonoids of willow herb (Chamerion angustifolium (L.) Holub) and their radical scavenging activity during vegetation. Adv Med Sci 2014; 59(1):136-141. doi: http://dx.doi.org/10.1016/j.advms.2013.10.00210.1016/j.advms.2013.10.002]Search in Google Scholar
[35. Deng LQ, Zhou SY, Mao JX, Liu S, Lan XZ, Liao ZH et al. HPLC-ESI-MS/MS analysis of phenolics and in vitro antioxidant activity of Epilobium angustifolium L. Nat Prod Res 2018; 32(12):1432-1435. doi: http://dx.doi.org/10.1080/14786419.2017.134465910.1080/14786419.2017.1344659]Search in Google Scholar
[36. Hiermann A, Juan H, Sametz W. Influence of Epilobium extracts on prostaglandin biosynthesis and carrageenin induced oedema of the rat paw. J Ethnopharmacol 1986; 17:161-169. doi: http://dx.doi.org/10.1016/0378-8741(86)90055-310.1016/0378-8741(86)90055-3]Search in Google Scholar
[37. Hiermann A, Reidlinger M, Juan H, Sametz W. Isolierung des antiphlogistischen Wirkprinzips von Epilobium angustifolium. [Isolation of the antiphlogistic active principle from Epilobium angustifolium] Planta Med 1991; 57(4):357-360. doi: http://dx.doi.org/10.1055/s-2006-96011710.1055/s-2006-960117]Search in Google Scholar
[38. Juan H, Sametz W, Hiermann A. Anti-inflammatory effects of a substance extracted from Epilobium angustifolium. Agents Actions 1988; 23(1-2):106-107.10.1007/BF01967206]Search in Google Scholar
[39. Ramstead AG, Schepetkin IA, Quinn MT, Jutila MA. Oenothein B, a cyclic dimeric ellagitannin isolated from Epilobium angustifolium, enhances IFNγ production by lymphocytes. PLoS ONE 2012; 7(11):e50546. doi: http://dx.doi.org/10.1371%2Fjournal.pone.005054610.1371/journal.pone.0050546]Search in Google Scholar
[40. Ramstead AG, Schepetkin IA, Todd K, Loeffelholz J, Berardinelli JG, Quinn MT et al. Aging influences the response of T cells to stimulation by the ellagitannin, oenothein B. Int Immunopharmacol 2015; 26(2):367-377. doi: http://dx.doi.org/10.1016/j.intimp.2015.04.00810.1016/j.intimp.2015.04.008]Search in Google Scholar
[41. Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T et al. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 2000; 56(1):3-12. doi: http://dx.doi.org/10.1016/S0168-1605(00)00218-X10.1016/S0168-1605(00)00218-X]Search in Google Scholar
[42. Battinelli L, Tita B, Evandri MG, Mazzanti G. Antimicrobial activity of Epilobium spp. extracts. Farmaco 2001; 56(5-7):345-348. doi: http://dx.doi.org/10.1016/S0014-827X(01)01047-310.1016/S0014-827X(01)01047-3]Search in Google Scholar
[43. Webster D, Taschereau P, Belland RJ. Antifungal activity of medicinal plant extracts; preliminary screening studies. J Ethnopharmacol 2008; 115:140-146. doi: http://dx.doi.org/10.1016/j.jep.2007.09.01410.1016/j.jep.2007.09.014]Search in Google Scholar
[44. Bartfay WJ, Bartfay E, Johnson JG. Gram-negative and Gram-positive antibacterial properties of the whole plant extract of willow herb (Epilobium angustifolium). Biol Res Nurs 2012; 14(1):85-89. doi: http://dx.doi.org/10.1177/109980041039394710.1177/1099800410393947]Search in Google Scholar
[45. Kosalec I, Kopjar N, Kremer D. Antimicrobial activity of willowherb (Epilobium angustifolium L.) leaves and flowers. Curr Drug Targets 2013; 14(9):986-991. doi: http://dx.doi.org/10.2174/1389450111314999017710.2174/13894501113149990177]Search in Google Scholar
[46. Tita B, Abdel-Haq H, Vitalone A, Mazzanti G, Saso L. Analgesic properties of Epilobium angustifolium, evaluated by the hot plate test and the writhing test. Farmaco 2001; 56(5-7):341-343. doi: http://dx.doi.org/10.1016/S0014-827X(01)01046-110.1016/S0014-827X(01)01046-1]Search in Google Scholar
[47. Ruszová E, Cheel J, Pávek S, Moravcová M, Hermannová M, Matějková I et al. Epilobium angus-tifolium extract demonstrates multiple effects on dermal fibroblasts in vitro and skin photo-protection in vivo. Gen Physiol Biophys 2013; 32(3):347-359. doi: http://dx.doi.org/10.4149/gpb_201303110.4149/gpb_201303123817638]Search in Google Scholar
[48. Roman I, Rusu MA, Puicǎ C, Borşa M. Citotoxic effects of three species of Epilobium (Onagraceae) herbal extracts in rats. Studia Univ Vasile Goldiş Seria ŞtiinţeleVieţii 2010; 20(1):19-23.]Search in Google Scholar
[49. Kujawski R, Ożarowski M, Derebecka-Hołysz N, Bartkowiak-Wieczorek J, Bogacz A, Karasiewicz M et al. Effect of willow herb (Epilobium angus-tifolium L.) extract on gene expression of selected P450 cytochromes in rat liver – preliminary study. Herba Pol 2009; 55(4):52-64.]Search in Google Scholar
[50. Kujawski R, Mrozikiewicz PM, Mikołajczak PŁ, Kuzio G, Bogacz A, Cichocka J et al. Influence of Epilobium angustifolium and Serenoa repens extracts on cytochrome 2D2 and 3A1 expression level in rats. Herba Pol 2010; 56(4):39-51.]Search in Google Scholar
[51. Bialonska D, Ramnani P, Kasimsetty SG, Muntha KR, Gibson GR, Ferreira D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal micro-biota. Int J Food Microbiol 2010; 140(2-3):175-182. doi: http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.03810.1016/j.ijfoodmicro.2010.03.03820452076]Search in Google Scholar
[52. Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Selma MV, García-Conesa MT et al. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res 2017; 61(1):1500901. doi: http://dx.doi.org/10.1002/mnfr.20150090110.1002/mnfr.20150090127158799]Search in Google Scholar
[53. Selma MV, Beltrán D, García-Villalba R, Espín JC, Tomás-Barberán FA. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct 2014; 5(8):1779-1784. doi: http://dx.doi.org/10.1039/c4fo00092g10.1039/C4FO00092G]Search in Google Scholar
[54. Selma MV, Tomás-Barberán FA, Beltrán D, García-Villalba R, Espín JC. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. Int J Syst Evol Microbiol 2014; 64:2346-2352. doi: http://dx.doi.org/10.1099/ijs.0.055095-010.1099/ijs.0.055095-024744017]Search in Google Scholar
[55. Beltrán D, Romo-Vaquero M, Espín JC, Tomás-Barberán FA, Selma MV. Ellagibacter isourolithinifaciens gen. nov., sp. nov., a new member of the family Eggerthellaceae, isolated from human gut. Int J Syst Evol Microbiol 2018; 68(5):1707-1712. doi: http://dx.doi.org/10.1099/ijsem.0.00273510.1099/ijsem.0.00273529583112]Search in Google Scholar
[56. Gaya P, Peirotén Á, Medina M, Álvarez I, Landete JM. Bifidobacterium pseudocatenulatum INIA P815: The first bacterium able to produce urolithins A and B from ellagic acid. J Funct Foods 2018; 45:95-99. doi: http://dx.doi.org/10.1016/j.jff.2018.03.04010.1016/j.jff.2018.03.040]Search in Google Scholar
[57. Romo-Vaquero M, García-Villalba R, González-Sarrías A, Beltrán D, Tomás-Barberán FA, Espín CA et al. Interindividual variability in the human metabolism of ellagic acid: Contribution of Gordonibacter to urolithin production. J Funct Foods 2015; 17:785-791. doi: http://dx.doi.org/10.1016/j.jff.2015.06.04010.1016/j.jff.2015.06.040]Search in Google Scholar
[58. Piwowarski JP, Granica S, Stefańska J, Kiss AK. Differences in metabolism of ellagitannins by human gut microbiota ex vivo cultures. J Nat Prod 2016; 79(12):3022-3030. doi: http://dx.doi.org/10.1055/s-0043-10937210.1055/s-0043-10937228454190]Search in Google Scholar
[59. Cortés-Martín A, García-Villalba R, González-Sarrías A, Romo-Vaquero M, Loria-Kohen V, Ramírez-de-Molina A et al. The gut microbiota urolithin metabotypes revisited: the human metabolism of ellagic acid is mainly determined by aging. Food Funct 2018; 9(8):4100-4106. doi: http://dx.doi.org/10.1039/c8fo00956b10.1039/C8FO00956B]Search in Google Scholar
[60. Tomás-Barberán FA, Selma MV, Espín JC. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 2016; 19(6):471-476. doi: http://dx.doi.org/10.1097/MCO.000000000000031410.1097/MCO.000000000000031427490306]Search in Google Scholar
[61. Piwowarski JP, Granica S, Zwierzyńska M, Stefańska J, Schopohl P, Melzig MF et al. Role of human gut microbiota metabolism in the anti-in-flammatory effect of traditionally used ellagitannin-rich plant materials. J Ethnopharmacol 2014; 155:801-809. doi: http://dx.doi.org/10.1016/j.jep.2014.06.03210.1016/j.jep.2014.06.03224969824]Search in Google Scholar
[62. Sánchez González C, Ciudad CJ, Izquierdo Pulido M, Noé V. Urolithin A causes p21 up regulation in prostate cancer cells. Eur J Nutr 2016; 55(3):1099-1112. doi: http://dx.doi.org/10.1007/s00394-015-0924-z10.1007/s00394-015-0924-z25962506]Search in Google Scholar
[63. Yuan T, Ma H, Liu W, Niesen DB, Shah N, Crews R et al. Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci 2016; 7(1):26-33. doi: http://dx.doi.org/10.1021/acschemneuro.5b0026010.1021/acschemneuro.5b0026026559394]Search in Google Scholar
[64. Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-dit-Félix AA et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 2016; 22:879-888. doi: http://dx.doi.org/10.1038/nm.413210.1038/nm.413227400265]Search in Google Scholar
[65. Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P et al. Neuroprotective effects of pomegranate juice against Parkinson’s disease and presence of ellagitannins-derived metabolite – Urolithin A – in the brain. Int J Mol Sci 2020; 21(1):202. doi: http://dx.doi.org/10.3390/ijms2101020210.3390/ijms21010202698188331892167]Search in Google Scholar
[66. Cerda B, Ceron JJ, Tomás-Barberán FA, Espín JC. Repeated oral administration of high doses of the pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. J Agric Food Chem 2003; 51(11):3493-3501. doi: http://dx.doi.org/10.1021/jf020842c10.1021/jf020842c12744688]Search in Google Scholar
[67. Seeram NP, Aronson WJ, Zhang Y, Henning SM, Moro A, Lee RP et al. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J Agric Food Chem 2007; 55(19):7732-7737. doi: http://dx.doi.org/10.1021/jf071303g10.1021/jf071303g17722872]Search in Google Scholar
[68. Seeram NP, Zhang Y, McKeever R, Henning SM, Lee RP, Suchard MA et al. Pomegranate juice and extracts provide similar levels of plasma and urinary ellagitannin metabolites in human subjects. J Med Food 2008; 11(2):390-394. doi: http://dx.doi.org/10.1089%2Fjmf.2007.65010.1089/jmf.2007.650319621618598186]Search in Google Scholar
[69. Núñez-Sánchez MA, García-Villalba R, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C et al. Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Mol Nutr Food Res 2014; 58(6):1199-1211. doi: http://dx.doi.org/10.1002/mnfr.20130093110.1002/mnfr.20130093124532260]Search in Google Scholar
[70. González-Sarrías A, Giménez-Bastida JA, García-Conesa MT, Gómez-Sánchez MB, García-Talavera NV, Gil-Izquierdo A et al. Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Mol Nutr Food Res 2010; 54(3):311-322. doi: http://dx.doi.org/10.1002/mnfr.20090015210.1002/mnfr.20090015219885850]Search in Google Scholar
[71. Freedland SJ, Carducci M, Kroeger N, Partin A, Rao JY, Jin Y et al. A double-blind, randomized, neoadjuvant study of the tissue effects of POMx pills in men prostate cancer before radical prostatectomy. Cancer Prev Res 2013; 6(10):1120-1127. doi: http://dx.doi.org/10.1158%2F1940-6207.CAPR-12-042310.1158/1940-6207.CAPR-12-0423380664223985577]Search in Google Scholar
[72. Kosmala Z, Zduńczyk J, Juśkiewicz A, Jurgoński E, Karlińska E, Macierzyński J et al. Chemical composition of defatted strawberry and raspberry seeds and the effect of these dietary ingredients on polyphenol metabolites, intestinal function, and selected serum parameters in rats. J Agric Food Chem 2015; 63(11):2989-2996. doi: http://dx.doi.org/10.1021/acs.jafc.5b0064810.1021/acs.jafc.5b0064825746061]Search in Google Scholar
[73. Stanisławska IJ, Piwowarski JP, Granica S, Kiss AK. The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamide. Phytomedicine 2018; 46:176-183. doi: http://dx.doi.org/10.1016/j.phymed.2018.03.05410.1016/j.phymed.2018.03.05430097116]Search in Google Scholar
[74. Stanisławska IJ, Granica S, Piwowarski JP, Szawkało J, Wiązecki K, Czarnocki Z et al. The activity of urolithin A and M4 valerolactone, colonic microbiota metabolites of polyphenols, in a prostate cancer in vitro model. Planta Med 2019; 85(2):118-125. doi: http://dx.doi.org/10.1055/a-0755-771510.1055/a-0755-771530340219]Search in Google Scholar