1. bookVolume 66 (2020): Issue 1 (March 2020)
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Pharmacological properties of fireweed (Epilobium angustifolium L.) and bioavailability of ellagitannins. A review

Published Online: 08 Oct 2020
Page range: 52 - 64
Received: 29 Jan 2020
Accepted: 11 Mar 2020
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
Summary

Fireweed (Epilobium angustifolium L.) is a well-known medicinal plant traditionally used in the treatment of urogenital diseases, stomach and liver disorders, skin problems, etc. E. angustifolium extracts show anti-androgenic, antiproliferative, cytotoxic, antioxidant, anti-inflammatory, immunomodulatory, and antimicrobial activities. The unique combination of biological properties demonstrated by the results of some studies indicates that fireweed has a positive effect in benign prostatic hyperplasia (BPH) and potentially in the prostate cancer chemoprevention. However, the efficacy of E. angustifolium phytotherapy is still poorly tested in clinical trials, while numerous beneficial effects of extracts have been documented in the in vitro and in vivo tests. Fireweed is rich in polyphenolic compounds, particularly ellagitannins. Currently, polyphenols are considered to be modulators of beneficial gut microbiota. The literature data support the use of ellagitannins in the prostate cancer chemoprevention, but caution is advised due to the highly variable production of urolithins by the individual microbiota. A better understanding of the microbiota’s role and the mechanisms of its action are crucial for an optimal therapeutic effect. This paper aims to summarize and discuss experimental data concerning pharmacological properties of E. angustifolium and bioavailability of ellagitannins – important bioactive compounds of this plant.

Keywords

1. Adamczak A, Dreger M, Seidler-Łożykowska K, Wielgus K. Fireweed (Epilobium angustifolium L.): botany, phytochemistry and traditional uses. A review. Herba Pol 2019; 65(3):51-63. doi: http://dx.doi.org/10.2478/hepo-2019-001810.2478/hepo-2019-0018Search in Google Scholar

2. European Medicines Agency (EMA). Committee on Herbal Medicinal Products. Assessment report on Epilobium angustifolium L. and/or Epilobium parviflorum Schreb., herba. 2015. http://www.ema.europa.eu/en/documents/herbal-summary/willow-herb-summary-public_en.pdf. Accessed 10 January 2020.Search in Google Scholar

3. Thorpe A, Neal D. Benign prostatic hyperplasia. Lancet 2003; 361:1359-1367. doi: http://dx.doi.org/10.1016/S0140-6736(03)13073-510.1016/S0140-6736(03)13073-5Search in Google Scholar

4. Allkanjari O, Vitalone A. What do we know about phytotherapy of benign prostatic hyperplasia? Life Sci J 2015; 126:42-56. doi: http://dx.doi.org/10.1016/j.lfs.2015.01.02310.1016/j.lfs.2015.01.02325703069Search in Google Scholar

5. Granica S, Piwowarski JP, Czerwińska ME, Kiss AK. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. J Ethnopharmacol 2014; 156:316-346. doi: http://dx.doi.org/10.1016/j.jep.2014.08.03610.1016/j.jep.2014.08.03625196824Search in Google Scholar

6. Schepetkin IA, Ramstead AG, Kirpotina LN, Voyich JM, Jutila MA, Quinn MT. Therapeutic potential of polyphenols from Epilobium angustifolium (fireweed). Phytother Res 2016; 30(8):1287-1297. doi: http://dx.doi.org/10.1002/ptr.564810.1002/ptr.5648504589527215200Search in Google Scholar

7. Yoshida T, Yoshimura M, Amakura Y. Chemical and biological significance of oenothein B and related ellagitannin oligomers with macrocyclic structure. Molecules 2018; 23(3):552. doi: http://dx.doi.org/10.3390/molecules2303055210.3390/molecules23030552601708329498647Search in Google Scholar

8. Ismail T, Calcabrini C, Diaz AR, Fimognari C, Turrini E, Cantazaro E et al. Ellagitannins in cancer chemoprevention and therapy. Toxins 2016; 8(5):151. doi: http://dx.doi.org/10.3390/toxins805015110.3390/toxins8050151488506627187472Search in Google Scholar

9. Livingstone TL, Beasy G, Mills RD, Plumb J, Needs PW, Mithen R et al. Plant bioactives and the prevention of prostate cancer: Evidence from human studies. Nutrients 2019; 11(9):2245. doi: http://dx.doi.org/10.3390/nu1109224510.3390/nu11092245676999631540470Search in Google Scholar

10. Selma MV, González-Sarrías A, Salas-Salvadó J, Andrés-Lacueva C, Alasalvar C, Örem A et al. The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithinmetabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normo-weight, overweight-obesity and metabolic syndrome. Clin Nutr 2018; 37(3): 897-905. doi: http://dx.doi.org/10.1016/j.clnu.2017.03.01210.1016/j.clnu.2017.03.01228347564Search in Google Scholar

11. Peyrottes A, Seksik P, Doré J, Marteau P. The microbiome in IBD. In: Sheng Ding N, De Cruz P. (eds.). Biomarkers in inflammatory bowel diseases. Cham. Springer 2019: 293-301.10.1007/978-3-030-11446-6_24Search in Google Scholar

12. Hiermann A, Bucar F. Studies of Epilobium angustifolium extracts on growth of accessory sexual organs in rats. J Ethnopharmacol 1997; 55:1 79-183. doi: http://dx.doi.org/10.1016/S0378-8741(96)01498-510.1016/S0378-8741(96)01498-5Search in Google Scholar

13. Ducrey B, Marston A, Göhring S, Hartmann RW, Hostettmann K. Inhibition of 5α-reductase and aromatase by the ellagitannins oenothein A and oenothein B from Epilobium species. Plan-ta Med 1997; 63(2):111-114. doi: http://dx.doi.org/10.1055/s-2006-95762410.1055/s-2006-957624Search in Google Scholar

14. Lesuisse D, Berjonneau J, Ciot C, Devaux P, Doucet B, Gourvest JF et al. Determination of oenothein B as the active 5-α-reductase-inhibiting principle of the folk medicine Epilobium parviflorum. J Nat Prod 1996; 59(5):490-492. doi: http://dx.doi.org/10.1021/np960231c10.1021/np960231cSearch in Google Scholar

15. Piwowarski JP, Bobrowska-Korczak B, Stanisławska I, Bielecki W, Wrzesień R, Granica S et al. Evaluation of the effect of Epilobium angus-tifolium aqueous extract on LNCaP cell proliferation in in vitro and in vivo models. Planta Med 2017; 83(14-15):1159-1168. doi: http://dx.doi.org/10.1055/s-0043-10937210.1055/s-0043-109372Search in Google Scholar

16. Deng L, Zong W, Tao X, Liu S, Feng Z, Lin Y et al. Evaluation of the therapeutic effect against benign prostatic hyperplasia and the active constituents from Epilobium angustifolium L. J Ethnopharmacol 2019; 232:1-10. doi: http://dx.doi.org/10.1016/j.jep.2018.11.04510.1016/j.jep.2018.11.045Search in Google Scholar

17. Vitalone A, Bordi F, Baldazzi C, Mazzanti G, Saso L, Tita B. Anti-proliferative effect on a prostatic epithelial cell line (PZ-HPV-7) by Epilobium angustifolium L. Farmaco 2001; 56(5-7):483-489. doi: http://dx.doi.org/10.1016/S0014-827X(01)01067-910.1016/S0014-827X(01)01067-9Search in Google Scholar

18. Vitalone A, McColl J, Thome D, Costa LG, Tita B. Characterization of the effect of Epilobium extracts on human cell proliferation. Pharmacology 2003; 69(2):79-87. doi: http://dx.doi.org/10.1159/00007236010.1159/00007236012928581Search in Google Scholar

19. Kiss A, Kowalski J, Melzig MF. Compounds from Epilobium angustifolium inhibit the specific metallopeptidases ACE, NEP and APN. Planta Med 2004; 70(10):919-923. doi: http://dx.doi.org/10.1055/s-2004-83261710.1055/s-2004-83261715490319Search in Google Scholar

20. Kiss A, Kowalski J, Melzig MF. Effect of Epilobium angustifolium L. extracts and polyphenols on cell proliferation and neutral endopeptidase activity in selected cell lines. Pharmazie 2006; 61(1):66-69.Search in Google Scholar

21. Kiss A, Kowalski J, Melzig MF. Induction of neutral endopeptidase activity in PC-3 cells by an aqueous extract of Epilobium angustifolium L. and oenothein B. Phytomedicine 2006; 13(4):284-289. doi: http://dx.doi.org/10.1016/j.phymed.2004.08.00210.1016/j.phymed.2004.08.00216492533Search in Google Scholar

22. Stolarczyk M, Piwowarski JP, Granica S, Stefańska J, Naruszewicz M, Kiss AK. Extracts from Epilobium sp. herbs, their components and gut microbiota metabolites of Epilobium ellagitannins, urolithins, inhibit hormone-dependent prostate cancer cells-(LNCaP) proliferation and PSA secretion. Phytother Res 2013; 27(12):1842-1848. doi: http://dx.doi.org/10.1002/ptr.494110.1002/ptr.494123436427Search in Google Scholar

23. Stolarczyk M, Naruszewicz M, Kiss AK. Extracts from Epilobium sp. herbs induce apoptosis in human hormone-dependent prostate cancer cells by activating the mitochondrial pathways. J Pharm Pharmacol 2013; 65(7):1044-1054. doi: http://dx.doi.org/10.1111/jphp.1206310.1111/jphp.1206323738732Search in Google Scholar

24. Schepetkin IA, Kirpotina LN, Jakiw L, Khlebnikov AI, Blaskovich CL, Jutila MA et al. Immunomodulatory activity of oenothein B isolated from Epilobium angustifolium. J Immunol 2009; 183(10):6754-6766. doi: http://dx.doi.org/10.4049/jimmunol.090182710.4049/jimmunol.0901827278354619846877Search in Google Scholar

25. Yoshimura M, Akiyama H, Kondo K, Sakata K, Matsuoka H, Amakura Y et al. Immunological effects of oenothein B, an ellagitannin dimer, on dendritic cells. Int J Mol Sci 2013; 14(1):46-56. doi: http://dx.doi.org/10.3390/ijms1401004610.3390/ijms14010046356525023344020Search in Google Scholar

26. Pei X, Xiao J, Wei G, Zhang Y, Lin F, Xiong Z et al. Oenothein B inhibits human non-small cell lung cancer A549 cell proliferation by ROS-mediated PI3K/Akt/NF-κB signaling pathway. Chem Biol Interact 2019; 298:112-120. doi: http://dx.doi.org/10.1016/j.cbi.2018.09.02110.1016/j.cbi.2018.09.02130452899Search in Google Scholar

27. Ostrovska H, Oleshchuk O, Vannini S, Cataldi S, Albi E, Codini M et al. Epilobium angustifolium L.: A medicinal plant with therapeutic properties. EuroBiotech J 2017; 1(2):126-131. doi: http://dx.doi.org/10.24190/ISSN2564-615X/2017/02.0310.24190/ISSN2564-615X/2017/02.03Search in Google Scholar

28. Maruška A, Ugenskienė R, Raulinaitytė D, Juozaitytė E, Kaškonienė V, Drevinskas T et al. Analysis of antiproliferative effect of Chamerion angustifolium water extract and its fractions on several breast cancer cell lines. Adv Med Sci 2017; 62(1):158-164. doi: http://dx.doi.org/10.1016/j.advms.2016.08.00210.1016/j.advms.2016.08.00228282602Search in Google Scholar

29. Shikov AN, Poltanov EA, Dorman HJD, Makarov VG, Tikhonov VP, Hiltunen R. Chemical composition and in vitro antioxidant evaluation of commercial water-soluble willow herb (Epilobium angustifolium L.) extracts. J Agric Food Chem 2006; 54(10):3617-3624. doi: http://dx.doi.org/10.1021/jf052606i10.1021/jf052606i19127734Search in Google Scholar

30. Štajner D, Popović BM, Boža P. Evaluation of willow herb’s (Epilobium angustofolium L.) antioxidant and radical scavenging capacities. Phytother Res 2007; 21(12):1242-1245. doi: http://dx.doi.org/10.1002/ptr.224410.1002/ptr.224417661326Search in Google Scholar

31. Hevesi TB, Blazics B, Kéry Á. Polyphenol composition and antioxidant capacity of Epilobium species. J Pharm Biomed Anal 2009; 49(1):26-31. doi: http://dx.doi.org/10.1016/j.jpba.2008.09.04710.1016/j.jpba.2008.09.04719013046Search in Google Scholar

32. Kiss AK, Bazylko A, Filipek A, Granica S, Jaszewska E, Kiarszys U et al. Oenothein B’s contribution to the anti-inflammatory and antioxidant activity of Epilobium sp. Phytomedicine 2011; 18(7):557-560. doi: http://dx.doi.org/10.1016/j.phymed.2010.10.01610.1016/j.phymed.2010.10.01621112753Search in Google Scholar

33. Kaškonienė V, Maruška A, Akuņeca I, Stankevičius M, Ragažinskienė O, Bartkuvienė V et al. Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub ecotypes grown in Lithuania. Nat Prod Res 2016; 30(12):1373-1381. doi: http://dx.doi.org/10.1080/14786419.2015.105879210.1080/14786419.2015.1058792Search in Google Scholar

34. Maruška A, Ragažinskienė O, Vyšniauskas O, Kaškonienė V, Bartkuvienė V, Kornyšova O et al. Flavonoids of willow herb (Chamerion angustifolium (L.) Holub) and their radical scavenging activity during vegetation. Adv Med Sci 2014; 59(1):136-141. doi: http://dx.doi.org/10.1016/j.advms.2013.10.00210.1016/j.advms.2013.10.002Search in Google Scholar

35. Deng LQ, Zhou SY, Mao JX, Liu S, Lan XZ, Liao ZH et al. HPLC-ESI-MS/MS analysis of phenolics and in vitro antioxidant activity of Epilobium angustifolium L. Nat Prod Res 2018; 32(12):1432-1435. doi: http://dx.doi.org/10.1080/14786419.2017.134465910.1080/14786419.2017.1344659Search in Google Scholar

36. Hiermann A, Juan H, Sametz W. Influence of Epilobium extracts on prostaglandin biosynthesis and carrageenin induced oedema of the rat paw. J Ethnopharmacol 1986; 17:161-169. doi: http://dx.doi.org/10.1016/0378-8741(86)90055-310.1016/0378-8741(86)90055-3Search in Google Scholar

37. Hiermann A, Reidlinger M, Juan H, Sametz W. Isolierung des antiphlogistischen Wirkprinzips von Epilobium angustifolium. [Isolation of the antiphlogistic active principle from Epilobium angustifolium] Planta Med 1991; 57(4):357-360. doi: http://dx.doi.org/10.1055/s-2006-96011710.1055/s-2006-960117Search in Google Scholar

38. Juan H, Sametz W, Hiermann A. Anti-inflammatory effects of a substance extracted from Epilobium angustifolium. Agents Actions 1988; 23(1-2):106-107.10.1007/BF01967206Search in Google Scholar

39. Ramstead AG, Schepetkin IA, Quinn MT, Jutila MA. Oenothein B, a cyclic dimeric ellagitannin isolated from Epilobium angustifolium, enhances IFNγ production by lymphocytes. PLoS ONE 2012; 7(11):e50546. doi: http://dx.doi.org/10.1371%2Fjournal.pone.005054610.1371/journal.pone.0050546Search in Google Scholar

40. Ramstead AG, Schepetkin IA, Todd K, Loeffelholz J, Berardinelli JG, Quinn MT et al. Aging influences the response of T cells to stimulation by the ellagitannin, oenothein B. Int Immunopharmacol 2015; 26(2):367-377. doi: http://dx.doi.org/10.1016/j.intimp.2015.04.00810.1016/j.intimp.2015.04.008Search in Google Scholar

41. Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T et al. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 2000; 56(1):3-12. doi: http://dx.doi.org/10.1016/S0168-1605(00)00218-X10.1016/S0168-1605(00)00218-XSearch in Google Scholar

42. Battinelli L, Tita B, Evandri MG, Mazzanti G. Antimicrobial activity of Epilobium spp. extracts. Farmaco 2001; 56(5-7):345-348. doi: http://dx.doi.org/10.1016/S0014-827X(01)01047-310.1016/S0014-827X(01)01047-3Search in Google Scholar

43. Webster D, Taschereau P, Belland RJ. Antifungal activity of medicinal plant extracts; preliminary screening studies. J Ethnopharmacol 2008; 115:140-146. doi: http://dx.doi.org/10.1016/j.jep.2007.09.01410.1016/j.jep.2007.09.014Search in Google Scholar

44. Bartfay WJ, Bartfay E, Johnson JG. Gram-negative and Gram-positive antibacterial properties of the whole plant extract of willow herb (Epilobium angustifolium). Biol Res Nurs 2012; 14(1):85-89. doi: http://dx.doi.org/10.1177/109980041039394710.1177/1099800410393947Search in Google Scholar

45. Kosalec I, Kopjar N, Kremer D. Antimicrobial activity of willowherb (Epilobium angustifolium L.) leaves and flowers. Curr Drug Targets 2013; 14(9):986-991. doi: http://dx.doi.org/10.2174/1389450111314999017710.2174/13894501113149990177Search in Google Scholar

46. Tita B, Abdel-Haq H, Vitalone A, Mazzanti G, Saso L. Analgesic properties of Epilobium angustifolium, evaluated by the hot plate test and the writhing test. Farmaco 2001; 56(5-7):341-343. doi: http://dx.doi.org/10.1016/S0014-827X(01)01046-110.1016/S0014-827X(01)01046-1Search in Google Scholar

47. Ruszová E, Cheel J, Pávek S, Moravcová M, Hermannová M, Matějková I et al. Epilobium angus-tifolium extract demonstrates multiple effects on dermal fibroblasts in vitro and skin photo-protection in vivo. Gen Physiol Biophys 2013; 32(3):347-359. doi: http://dx.doi.org/10.4149/gpb_201303110.4149/gpb_201303123817638Search in Google Scholar

48. Roman I, Rusu MA, Puicǎ C, Borşa M. Citotoxic effects of three species of Epilobium (Onagraceae) herbal extracts in rats. Studia Univ Vasile Goldiş Seria ŞtiinţeleVieţii 2010; 20(1):19-23.Search in Google Scholar

49. Kujawski R, Ożarowski M, Derebecka-Hołysz N, Bartkowiak-Wieczorek J, Bogacz A, Karasiewicz M et al. Effect of willow herb (Epilobium angus-tifolium L.) extract on gene expression of selected P450 cytochromes in rat liver – preliminary study. Herba Pol 2009; 55(4):52-64.Search in Google Scholar

50. Kujawski R, Mrozikiewicz PM, Mikołajczak PŁ, Kuzio G, Bogacz A, Cichocka J et al. Influence of Epilobium angustifolium and Serenoa repens extracts on cytochrome 2D2 and 3A1 expression level in rats. Herba Pol 2010; 56(4):39-51.Search in Google Scholar

51. Bialonska D, Ramnani P, Kasimsetty SG, Muntha KR, Gibson GR, Ferreira D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal micro-biota. Int J Food Microbiol 2010; 140(2-3):175-182. doi: http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.03810.1016/j.ijfoodmicro.2010.03.03820452076Search in Google Scholar

52. Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Selma MV, García-Conesa MT et al. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res 2017; 61(1):1500901. doi: http://dx.doi.org/10.1002/mnfr.20150090110.1002/mnfr.20150090127158799Search in Google Scholar

53. Selma MV, Beltrán D, García-Villalba R, Espín JC, Tomás-Barberán FA. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct 2014; 5(8):1779-1784. doi: http://dx.doi.org/10.1039/c4fo00092g10.1039/C4FO00092GSearch in Google Scholar

54. Selma MV, Tomás-Barberán FA, Beltrán D, García-Villalba R, Espín JC. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. Int J Syst Evol Microbiol 2014; 64:2346-2352. doi: http://dx.doi.org/10.1099/ijs.0.055095-010.1099/ijs.0.055095-024744017Search in Google Scholar

55. Beltrán D, Romo-Vaquero M, Espín JC, Tomás-Barberán FA, Selma MV. Ellagibacter isourolithinifaciens gen. nov., sp. nov., a new member of the family Eggerthellaceae, isolated from human gut. Int J Syst Evol Microbiol 2018; 68(5):1707-1712. doi: http://dx.doi.org/10.1099/ijsem.0.00273510.1099/ijsem.0.00273529583112Search in Google Scholar

56. Gaya P, Peirotén Á, Medina M, Álvarez I, Landete JM. Bifidobacterium pseudocatenulatum INIA P815: The first bacterium able to produce urolithins A and B from ellagic acid. J Funct Foods 2018; 45:95-99. doi: http://dx.doi.org/10.1016/j.jff.2018.03.04010.1016/j.jff.2018.03.040Search in Google Scholar

57. Romo-Vaquero M, García-Villalba R, González-Sarrías A, Beltrán D, Tomás-Barberán FA, Espín CA et al. Interindividual variability in the human metabolism of ellagic acid: Contribution of Gordonibacter to urolithin production. J Funct Foods 2015; 17:785-791. doi: http://dx.doi.org/10.1016/j.jff.2015.06.04010.1016/j.jff.2015.06.040Search in Google Scholar

58. Piwowarski JP, Granica S, Stefańska J, Kiss AK. Differences in metabolism of ellagitannins by human gut microbiota ex vivo cultures. J Nat Prod 2016; 79(12):3022-3030. doi: http://dx.doi.org/10.1055/s-0043-10937210.1055/s-0043-10937228454190Search in Google Scholar

59. Cortés-Martín A, García-Villalba R, González-Sarrías A, Romo-Vaquero M, Loria-Kohen V, Ramírez-de-Molina A et al. The gut microbiota urolithin metabotypes revisited: the human metabolism of ellagic acid is mainly determined by aging. Food Funct 2018; 9(8):4100-4106. doi: http://dx.doi.org/10.1039/c8fo00956b10.1039/C8FO00956BSearch in Google Scholar

60. Tomás-Barberán FA, Selma MV, Espín JC. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 2016; 19(6):471-476. doi: http://dx.doi.org/10.1097/MCO.000000000000031410.1097/MCO.000000000000031427490306Search in Google Scholar

61. Piwowarski JP, Granica S, Zwierzyńska M, Stefańska J, Schopohl P, Melzig MF et al. Role of human gut microbiota metabolism in the anti-in-flammatory effect of traditionally used ellagitannin-rich plant materials. J Ethnopharmacol 2014; 155:801-809. doi: http://dx.doi.org/10.1016/j.jep.2014.06.03210.1016/j.jep.2014.06.03224969824Search in Google Scholar

62. Sánchez González C, Ciudad CJ, Izquierdo Pulido M, Noé V. Urolithin A causes p21 up regulation in prostate cancer cells. Eur J Nutr 2016; 55(3):1099-1112. doi: http://dx.doi.org/10.1007/s00394-015-0924-z10.1007/s00394-015-0924-z25962506Search in Google Scholar

63. Yuan T, Ma H, Liu W, Niesen DB, Shah N, Crews R et al. Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci 2016; 7(1):26-33. doi: http://dx.doi.org/10.1021/acschemneuro.5b0026010.1021/acschemneuro.5b0026026559394Search in Google Scholar

64. Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-dit-Félix AA et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 2016; 22:879-888. doi: http://dx.doi.org/10.1038/nm.413210.1038/nm.413227400265Search in Google Scholar

65. Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P et al. Neuroprotective effects of pomegranate juice against Parkinson’s disease and presence of ellagitannins-derived metabolite – Urolithin A – in the brain. Int J Mol Sci 2020; 21(1):202. doi: http://dx.doi.org/10.3390/ijms2101020210.3390/ijms21010202698188331892167Search in Google Scholar

66. Cerda B, Ceron JJ, Tomás-Barberán FA, Espín JC. Repeated oral administration of high doses of the pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. J Agric Food Chem 2003; 51(11):3493-3501. doi: http://dx.doi.org/10.1021/jf020842c10.1021/jf020842c12744688Search in Google Scholar

67. Seeram NP, Aronson WJ, Zhang Y, Henning SM, Moro A, Lee RP et al. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J Agric Food Chem 2007; 55(19):7732-7737. doi: http://dx.doi.org/10.1021/jf071303g10.1021/jf071303g17722872Search in Google Scholar

68. Seeram NP, Zhang Y, McKeever R, Henning SM, Lee RP, Suchard MA et al. Pomegranate juice and extracts provide similar levels of plasma and urinary ellagitannin metabolites in human subjects. J Med Food 2008; 11(2):390-394. doi: http://dx.doi.org/10.1089%2Fjmf.2007.65010.1089/jmf.2007.650319621618598186Search in Google Scholar

69. Núñez-Sánchez MA, García-Villalba R, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C et al. Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Mol Nutr Food Res 2014; 58(6):1199-1211. doi: http://dx.doi.org/10.1002/mnfr.20130093110.1002/mnfr.20130093124532260Search in Google Scholar

70. González-Sarrías A, Giménez-Bastida JA, García-Conesa MT, Gómez-Sánchez MB, García-Talavera NV, Gil-Izquierdo A et al. Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Mol Nutr Food Res 2010; 54(3):311-322. doi: http://dx.doi.org/10.1002/mnfr.20090015210.1002/mnfr.20090015219885850Search in Google Scholar

71. Freedland SJ, Carducci M, Kroeger N, Partin A, Rao JY, Jin Y et al. A double-blind, randomized, neoadjuvant study of the tissue effects of POMx pills in men prostate cancer before radical prostatectomy. Cancer Prev Res 2013; 6(10):1120-1127. doi: http://dx.doi.org/10.1158%2F1940-6207.CAPR-12-042310.1158/1940-6207.CAPR-12-0423380664223985577Search in Google Scholar

72. Kosmala Z, Zduńczyk J, Juśkiewicz A, Jurgoński E, Karlińska E, Macierzyński J et al. Chemical composition of defatted strawberry and raspberry seeds and the effect of these dietary ingredients on polyphenol metabolites, intestinal function, and selected serum parameters in rats. J Agric Food Chem 2015; 63(11):2989-2996. doi: http://dx.doi.org/10.1021/acs.jafc.5b0064810.1021/acs.jafc.5b0064825746061Search in Google Scholar

73. Stanisławska IJ, Piwowarski JP, Granica S, Kiss AK. The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamide. Phytomedicine 2018; 46:176-183. doi: http://dx.doi.org/10.1016/j.phymed.2018.03.05410.1016/j.phymed.2018.03.05430097116Search in Google Scholar

74. Stanisławska IJ, Granica S, Piwowarski JP, Szawkało J, Wiązecki K, Czarnocki Z et al. The activity of urolithin A and M4 valerolactone, colonic microbiota metabolites of polyphenols, in a prostate cancer in vitro model. Planta Med 2019; 85(2):118-125. doi: http://dx.doi.org/10.1055/a-0755-771510.1055/a-0755-771530340219Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo