Cite

Figure 1

Process involved in plasma seed treatment, along with performance and surface sanitization benefits that are implied by data from literature review.
Process involved in plasma seed treatment, along with performance and surface sanitization benefits that are implied by data from literature review.

Figure 2

A. RF plasma experimental set-up: Alternator (1), vacuum chamber (2), electrodes (3, 3′), quartz window of discharge chamber (4), inductor (5,5′), voltage meter (6), tuning capacitor (7), Rogowski coil (8), lens (9), monochromator (10). (Filatova et al., n.d.); B. RF plasma system for treating lentil and pepper seeds.(Shapira, Chaniel, and Bormashenko 2018); C. Low plasma and vibrating stirring device with seeds. (Ono et al. 2017); D. Non-thermal plasma to sterilize rice seeds (Khamsen et al., n.d.); E. Micro DBD plasma for sanitizing spinach seeds. (Ji et al. 2016); F. Plasma system cross section view and equipment on shaker (de Groot et al. 2018); G. Schematic diagram of discharge plasma reaction system.(Guo et al. 2018).
A. RF plasma experimental set-up: Alternator (1), vacuum chamber (2), electrodes (3, 3′), quartz window of discharge chamber (4), inductor (5,5′), voltage meter (6), tuning capacitor (7), Rogowski coil (8), lens (9), monochromator (10). (Filatova et al., n.d.); B. RF plasma system for treating lentil and pepper seeds.(Shapira, Chaniel, and Bormashenko 2018); C. Low plasma and vibrating stirring device with seeds. (Ono et al. 2017); D. Non-thermal plasma to sterilize rice seeds (Khamsen et al., n.d.); E. Micro DBD plasma for sanitizing spinach seeds. (Ji et al. 2016); F. Plasma system cross section view and equipment on shaker (de Groot et al. 2018); G. Schematic diagram of discharge plasma reaction system.(Guo et al. 2018).

Figure 3

A. Picture of wheat seeds between two electrodes showing UV irradiation. (Guo et al. 2018); B. Needle-plate set-up on cotton seeds (Wang et al. 2017); C. Plasma and UV light for sterilizing fruits and seeds (Hayashi et al. 2014); D. Plasma irradiation on radish seeds via DBD plasma (Kitazaki et al. 2014); E. Germicidal treatment system (Takemura et al. 2014); F. Plasma experimental setup (Matra 2016); G. Schematic diagram for DCSBD plasma treatment of maize (Zahoranová et al. 2018); H. DCSBD plasma tool sterilizing black peppercorn sample.(Mošovská et al. 2018); I. Surface discharge plasma made of 13 copper wire (Dobrin et al. 2015).
A. Picture of wheat seeds between two electrodes showing UV irradiation. (Guo et al. 2018); B. Needle-plate set-up on cotton seeds (Wang et al. 2017); C. Plasma and UV light for sterilizing fruits and seeds (Hayashi et al. 2014); D. Plasma irradiation on radish seeds via DBD plasma (Kitazaki et al. 2014); E. Germicidal treatment system (Takemura et al. 2014); F. Plasma experimental setup (Matra 2016); G. Schematic diagram for DCSBD plasma treatment of maize (Zahoranová et al. 2018); H. DCSBD plasma tool sterilizing black peppercorn sample.(Mošovská et al. 2018); I. Surface discharge plasma made of 13 copper wire (Dobrin et al. 2015).

Potential reactions in the plasma discharge region.

Eq. # Equation Reference
(1) e + H2O → e + OH* + H (Takemura et al., 2014)
(2) e + CO2 → CO + O + e
(3) e + O2 → O(1D) + O (3P) + e
(4) O(1D) + H2O → OH* + OH*
(1) e + O2 → 2O + e (Kitazaki et al., 2014)
(2) O + O2 + M → O3 + M, k = 3.4 × 10−34cm6/s
(3) e + N2 → e + 2N
(4) N + O2 → NO + O, k = 7.7 × 10−17cm3/s
(5) N+ O3 → NO + O2, k = 3.7 × 10−13cm3/s
(6) O + NO2 → NO + O2, k = 9.7 × 10−12cm3/s
(7) NO + O3 → NO2 + O2, k = 2.1 × 10−14cm3/s
(8) H2O + e → OH + H + e
(9) H + O2 + M → HO2 + M, k = 1.8 × 10−32cm3/s
(10) NO + HO2 → NO2 + OH, k = 7.8 × 10−12cm3/s

Experimental parameters of plasma agriculture experiments.

Reference Seed Carrier gas Experimental parameter Plasma Primary focus of investigation

Type Amount Type Flow rate Pressure Seed holder material type Treatment time Type Power Indication of success (±/0)
(Filatova et al., 2013) Spring wheat (Triticum aestivum L.), blue lupine (Lupinus angustifolius), and maize (Zea mays L.) (1) 50(2) 60 Air N/A (1) 0.5 Torr(2) 0.3–0.5 Torr Petri dish (1) 2.5 min, 5 min, 8 min, 10 min(2) 1 min, 5 min, 7 min, 10 min, 20 min RF (1) 5.28 MHz; 0.2–0.6 W/cm2(2) 13.56 MHz; 50 W, 100 W, and 200 W Germination (+); Seedling health (±) treatment dependent; microorganisms (±) treatment dependent
(Shapira et al., 2018) Lentil (Lens culinaris), pepper (Capsicum annuum) 2 (1 pair) Air N/A 0.5 Torr Silk wires inside a capacitor 60 s RF Frequency: 13.56 MHz; RF discharge: 18 W; voltage: 6 kV Surface charge density and kinetics (+); wettability: (+)
(Filatova et al., 2009) Grain crops (rye, wheat, barley), legumes (peas and narrow-leaved lupin), and aster 100 Air N/A 0.3–0.7 Torr Two parallel round Cu electrodes 7 min, 15 min, and 30 min RF 5.28 MHz; RF discharge: 5.28 MHz; power: 0.9 W/cm3 Germination (+); pathogenic microbes (+) (Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633)
(Ling et al., 2015) Soybean (Glycine max (L.) Merr) N/A He N/A 1.1 Torr Polar plates 15 s RF 0 W, 60 W, 80 W, 100 W, and 120 W Germination (+); growth (+); water uptake (+); soluble sugar and protein content (+)
(Li et al., 2016) Peanut N/A He N/A 1.1 Torr Conveyer belt 15 s RF 60–140 W; 13.56 MHz Germination (+); yield (+); growth (+)
(Ono et al., 2017) Cabbage 1,000 (1) Air, (2) O2 N/A 0.45 Torr Plastic pot 0–3 h RF 13.56 MHz, 100 W Inactivation of bacteria on plant seed (+)
(Shapira et al., 2017) Pepper, lentil N/A N/A N/A 0.5 Torr N/A 60 s RF 13.56 MHz, 18 W Seed surface charging (0)
(Selcuk et al., 2008) Wheat, barley, oats, lentil 1–8 g Air and SF6 N/A 500 mTorr Quartz tube 30 s to 30 min Low pressure cold plasma 1 kHz, 300 W, 20 kV Microbial reduction (+);germination (+)
(Ahn et al., 2019) Yellow dent corn hybrid (1) 1,500(2) 120; 1,512 total(3) N/A(4) 1,500 (1) N2(2) He + N2(3) He(4) He + air (1) N/A(2) 15 + 3 LPM(3) 10 LPM(4) 10 + 5 LPM (1) 100 mTorr, 10−6 Torr(2) Atm.(3) Atm. (4) Atm. (1) Mesh plate(2) Al mesh plate(3) Plate(4) Al mesh plate (1) 2 min., 10 min(2) 3 s(3) 10 s(4) 10 min (1) RF(2) MW(3) DBD(4) MW (1) 800 W, 13.56 MHz(2) 500 W(3) 15 kV; 35 kHz(4) 800 W Seed growth (0); germination (0); yield (0)
(Sinegovskaya et al., 2019) Soybean N/A (1) Air(2) Ar + air N/A Atm. N/A N/A (1) DBD(2) MW jet (1) 28–32 kHz, 6–12 kV, AC(2) 2.45 GHz Germination (±) treatment dependent
(Ji et al., 2016) Spinach (Spinacia oleracea (L.)) (1) 50(2) 25 (1) Air + N2(2) N/A (1) 1.5 LPM(2) N/A Atm. (1) Petri dish(2) Wire gauze 30 s, 1 min, 3 min (1) DBD(2) Pulsed N/A Germination (±); growth (±); treatment dependent
(Gómez-Ramírez et al., 2017) Quinoa N/A Air (1) N/A(2) 0.005 LPM (1) 375 Torr(2) 0.08 Torr (1) Quartz plate(2) N/A 10 s, 30 s, 60 s, 180 s, 900 s (1) DBD(2) RF (1) 6.4 W(2) 15 W, 13.56 MHz Germination (±); treatment dependent; surface chemistry (+)
(de Groot et al., 2018) Cotton 350 (1) Air(2) Ar 1 LPM Atm. Borosilicate glass cylinder (1) 0 min, 3 min, 27 min (2) 81 min DBD N/A Germination (+); water uptake (+)
(Guo et al., 2018) Wheat 50 Air 1.5 LPM Atm. Wire netting in a plexiglass cylinder 4 min DBD Discharge voltage: 0.0 kV, 9 kV, 11 kV, 13 kV, 15 kV, and 17 kV, 50 Hz Vitality (+); growth (+); water uptake (+)
(Kitazaki et al., 2014) Radish sprouts 10 per line Air N/A Atm. Glass plate 180 s DBD 10 kHz AC. P2P discharge voltage and current 9.2 kV/0.2 A. Discharge power: 1.49 W/cm2 Growth (+); NO x and O3 emissions (0)
(Wang et al., 2017) Cotton 120 g Air N2 1 SLPM Atm. Needle-plate structure 3 min, 9 min, 27 min DBD 19 kV, 1 kHz AC Seed spectral characteristics (0); water uptake (+)
(Khamsen et al., n.d.) Rice 25 Air, air + Ar N/A Atm. Glass plate 15 s, 30 s, 45 s, 1 min, 2 min DBD N/A Sterilization(+); germination (+); water uptake (+)
(da Silva et al., 2017) Mimosa caesalpiniafolia Benth 100 N/A N/A Atm. Glass tubes, metal mesh screen 3 min, 9 min, 15 min DBD 17.5 kV, 990 Hz Seed wettability (+); imbibition (+); germination (+)
(Hayashi et al., 2014) Rice N/A Air N/A Atm. Dish (unknown material) 20 min DBD 10 kHz Surface sterilization of seed and fruit surfaces (+)
(Dobrin et al., 2015) Wheat 105 N/A N/A Atm. Glass plate 5 min, 15 min, 30 min DBD 2.7 W, 15 kV, 50 Hz Germination (+); water absorption (+); root length (+)
(Pérez-Pizá et al., 2019) Soybean (Glycine max (L.) Merrill) 500 (1) O2(2) N2 6 NL min−1 Atm. N/A 60–180 s DBD 50 Hz,0–25 kV, AC Pathogenic reduction (+); plant growth (+)
(Butscher et al., 2016) Sprout seeds: onion (Alliumcepa), radish (Raphanus sativus), cress (Lepidiumsativum), alfalfa (Medicago sativa) 10 g Ar 5.6 NL min−1 Atm. PC 500 ns DBD 2.5–10 kHz, 6–10 kV Germination (+); microbial inactivation (+) (Salmonella and E. coli)
(Nishioka et al., 2016) Brassicaceous (Brassica campestris var. amplexicaulis) 20 Ar 0.5–1 LPM 10.7–16.0 kPa Mesh sheet, unknown material 0 min, 5 min, 10 min, 20 min, 40 min DBD AC, 10 kHz, 2.5–5.5 kV Disinfection and DNA of pathogen (+) (Xanthomonas campestris pv. Campestris)
(Jo et al., 2014) Rice (Oryza sativa L.) 3–5 Air N/A Atm. Aluminum holder 0 min, 0.5 min, 1 min, 2 min, 3 min DBD 30 kV, 22 kHz, 3 W dishcarge Fungal pathogen reduction (+) (Gibberella fujikuroi and cnoidia)
(Mitra et al., 2014) Chickpea (Cicer arietinum) NA Air N/A Atm. Polyoxymethylene–copolymer 0.5–5 min DBD 17 kVpp, 5 kVpp, 0 kVpp Germination (+); microbial reduction (+)
(Feizollahi et al., 2020) Barley grain 11–12 Air N/A Atm. Plastic cup 0 min, 2 min, 4 min, 6 min, 8 min, 10 min DBD 0–34 kV; 3,500 Hz; duty cycle 70%; 1 Amp; 300 W Microbial reduction of DON (+); germination (+)
(Kordas et al., 2015) Winter wheat grain 200 Air N/A Atm. Packed bed 3 s, 10 s, 30 s PBDBD 100 Hz, 83 kHz, 8 kV (AC) Fungus colonization reduction (+)
(Anna Zahoranová et al., 2018) Maize (Zea mays L; cv. Ronaldinio) 200–250 Air N/A Atm. Ceramic plate 30–300 s DCSBD 14 kHz, up to 20 kV, 400 W, AC Inhibition of surface microorganisms (+); seedling growth (+/0) treatment dependent
(A. Zahoranová et al., 2016) Wheat (Triticum aestivum L. cv. Eva) 100–300 Air N/A Atm. Ceramic plate 30–300 s DCSBD 14 kHz, up to 20 kV, 400 W, AC Inhibition of surface microorganisms (+); germination (+); water uptake (+)
(Štěpánová et al., 2018) Cucumber (Cucumis sativus L.), Pepper (Capsicum annuum L.) 100 Air N/A Atm. Ceramic 20–50 s 4–12 s DCSBD 400 W, 20 kV, 15 kHz AC Germination (+); Pathogenic microbes (+) (Didymella licopersici spores)
(Waskow et al., 2018) Lentil 1 g Air N/A Atm. Alumina ceramic plate 0–10 min DCSBD 400 W Germination (+); microbial inactivation (+) (several strains of bacteria and fungi)
(Mošovská et al., 2018) Black peppercorn 5 g Air N/A Atm. Ceramic plate 60 s, 120 s, 180 s, 240 s, and 300 s DCSBD 400 W DC, 18 kHz, 10 kV Pathogenic bacteria inhibition (+)
(Puligundla et al., 2017) Radish 3 g Air 2.5 m/s Atm. Petri dish 0–3 min Plasma jet 20 kV DC, 1.5 A, 58 kHz Germination (±); treatment dependent; decontamination (+)
(Matra, 2016) Radish 10 Ar 4 LPM Atm. Acrylic box 2 min, 4 min, 6 min Plasma jet (1) 90 W (21.2 kV) (2) 140 W (30 kV) Germination (+)
(Takemura et al., 2014) Black pepper 1 g (1) Ar(2) Ar + CO2(3) Air(4) Ar + H2O (1) 20 LPM(2) 0.5 LPM, 20 LPM(3) 20 LPM(4) 20 LPM Atm. Petri dish 5 min Plasma jet Pulse – 280 V, 8 A, 16–20 kHz Sterilization (±) treatment dependent
(Kim et al., 2017) Broccoli (Brassica oleracea var. kialica plen.) 1 g N/A N/A N/A Petri plate 0–3 min Plasma jet 220 V AC, 20 kV DC, 58 kHz Microbial reduction (+); germination (+)
(Bafoil et al., 2018) Arabidopsis Thaliana 150–300 seeds (1) Air(2)He (2b)He (1) N/A(2) 3 L/min (1) Atm (1) Glass plate(2) Eppendorf tube(2b) Glass beaker (2) 15 min (1) DBD(2) Plasma jet(2b) Plasma jet/DBD (1) HV(2) 10 kV, 9.7 kHz, Germination (+); growth (+)
eISSN:
2332-7774
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Materials Sciences, Physics