Cite

Anthony S, Hintze P (2014) Trash-to-gas: determining the ideal technology for converting space trash into useful products. doi: ICES-2014-016. AnthonyS HintzeP 2014 Trash-to-gas: determining the ideal technology for converting space trash into useful products doi: ICES-2014-016. Search in Google Scholar

Caraccio A, Hintze P (2013) Trash-to-gas: converting space trash into useful products. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130011661.pdf. CaraccioA HintzeP 2013 Trash-to-gas: converting space trash into useful products Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130011661.pdf. 10.2514/6.2013-3440 Search in Google Scholar

Caraccio A, Hintze PE, Miles JD (2014) Human factor investigation of waste processing system during the HI-SEAS 4-month mars analog mission in support of NASA's logistic reduction and repurposing project: trash to gas. Available at: https://ntrs.nasa.gov/search.jsp?R=20140017442. CaraccioA HintzePE MilesJD 2014 Human factor investigation of waste processing system during the HI-SEAS 4-month mars analog mission in support of NASA's logistic reduction and repurposing project: trash to gas Available at: https://ntrs.nasa.gov/search.jsp?R=20140017442. Search in Google Scholar

Ewert M, Broyan J, Semones E, Goodliff K, Singleterry R. Jr, Abston L, Clowdsley M, Wittkopp C, Vitullo N, Chai P (2017) Comparing trash disposal to use as radiation shielding for a mars transit vehicle. doi: ICES-2017-178. EwertM BroyanJ SemonesE GoodliffK SingleterryRJr AbstonL ClowdsleyM WittkoppC VitulloN ChaiP 2017 Comparing trash disposal to use as radiation shielding for a mars transit vehicle doi: ICES-2017-178. Search in Google Scholar

Ewert MK, Broyan JL (2013) Mission benefits analysis of logistics reduction technologies.3383, 14–18. Available at: https://arc.aiaa.org/doi/pdf/10.2514/6.2013-3383. EwertMK BroyanJL 2013 Mission benefits analysis of logistics reduction technologies 3383 14 18 Available at: https://arc.aiaa.org/doi/pdf/10.2514/6.2013-3383. Search in Google Scholar

Fisher JW, Lee JM, Goeser J, Monje O (2018) Heat Melt Compactor Gas Contaminants from Single Waste Materials. Albuquerque, NM. FisherJW LeeJM GoeserJ MonjeO 2018 Heat Melt Compactor Gas Contaminants from Single Waste Materials Albuquerque, NM Search in Google Scholar

Hintze P, Santiago-Maldonado E, Kulis M, Lytle J, Fisher J, Lee J, Vaccaro H, Ewert M, Broyan J (2012) Trash to supply gas (TtSG) project overview. In American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2012-5254. HintzeP Santiago-MaldonadoE KulisM LytleJ FisherJ LeeJ VaccaroH EwertM BroyanJ 2012 Trash to supply gas (TtSG) project overview In American Institute of Aeronautics and Astronautics 10.2514/6.2012-5254 Open DOISearch in Google Scholar

Hintze PE, Caraccio A, Anthony SM, DeVor R, Captain JG, Tsoras A, Nur M (2013) Trash-to-gas: using waste products to minimize logistical mass during long duration space missions. In AIAA SPACE Conference and Exposition. Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2013-5326. HintzePE CaraccioA AnthonySM DeVorR CaptainJG TsorasA NurM 2013 Trash-to-gas: using waste products to minimize logistical mass during long duration space missions In AIAA SPACE Conference and Exposition Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2013-5326. 10.2514/6.2013-5326 Search in Google Scholar

Linne DL, Palaszewski BA, Gokoglu SA, Balasubramaniam B, Hegde UG, Gallo C (2014) Waste management options for long-duration space missions: when to reject, reuse, or recycle. In 7th Symposium on Space Resource Utilization, AIAA SciTech Forum. doi: 10.2514/6.2014-0497. LinneDL PalaszewskiBA GokogluSA BalasubramaniamB HegdeUG GalloC 2014 Waste management options for long-duration space missions: when to reject, reuse, or recycle In 7th Symposium on Space Resource Utilization, AIAA SciTech Forum 10.2514/6.2014-0497 Open DOISearch in Google Scholar

Liu J, He Y, Wang J, Wang J, Tao C, Yuen R, Li H (2019) Investigation on the combustion efficiency and residual of nitrocellulose-alcohol humectant mixtures. Journal of Thermal Analysis and Calorimetry 136 (Copyright (C) 2020 American Chemical Society (ACS). All Rights Reserved.), 1807–16. doi: 10.1007/s10973-018-7817-3. LiuJ HeY WangJ WangJ TaoC YuenR LiH 2019 Investigation on the combustion efficiency and residual of nitrocellulose-alcohol humectant mixtures Journal of Thermal Analysis and Calorimetry 136 (Copyright (C) 2020 American Chemical Society (ACS). All Rights Reserved.) 1807 16 10.1007/s10973-018-7817-3 Open DOISearch in Google Scholar

Medina JAT, Meier AJ, Shah M, Rinderknecht D (2020) Waste conversion to usable gases for long duration space missions. 14. AIAA. doi: 10.2514/6.2020-4035. MedinaJAT MeierAJ ShahM RinderknechtD 2020 Waste conversion to usable gases for long duration space missions 14 AIAA 10.2514/6.2020-4035 Open DOISearch in Google Scholar

Meier A, Shah M, Medina JT (2019a) Microgravity Experimentation of Long Duration Space Mission Waste Conversion. Boston, MA. https://ttu-ir.tdl.org/handle/2346/84889. MeierA ShahM MedinaJT 2019a Microgravity Experimentation of Long Duration Space Mission Waste Conversion Boston, MA https://ttu-ir.tdl.org/handle/2346/84889. Search in Google Scholar

Meier A, Shah M, Quinn K, Engeling K (2019b) Demonstration of Plasma Assisted Waste Conversion to Gas. Available at: https://ttu-ir.tdl.org/handle/2346/84884. MeierA ShahM QuinnK EngelingK 2019b Demonstration of Plasma Assisted Waste Conversion to Gas Available at: https://ttu-ir.tdl.org/handle/2346/84884. Search in Google Scholar

Meier AJ, Shah Mg, Medina JT, Rinderknecht D, Pitts RP (2020) Space mission waste conversion experiments at the zero gravity facility. 11. MeierAJ ShahMg MedinaJT RinderknechtD PittsRP 2020 Space mission waste conversion experiments at the zero gravity facility 11 Search in Google Scholar

Olson SL (1987) The Effect of Microgravity on Flame Spread Over A Thin Fuel. Lewis Research Center, Ohio: Case Wester Reserve University. Available at: https://ntrs.nasa.gov/api/citations/19880006471/downloads/19880006471.pdf. OlsonSL 1987 The Effect of Microgravity on Flame Spread Over A Thin Fuel Lewis Research Center, Ohio Case Wester Reserve University Available at: https://ntrs.nasa.gov/api/citations/19880006471/downloads/19880006471.pdf. Search in Google Scholar

Olson SL (1991) Mechanisms of microgravity flame spread over a thin solid fuel: oxygen and opposed flow effects. Combustion Science and Technology 76(4–6), 233–49. doi: 10.1080/00102209108951711. OlsonSL 1991 Mechanisms of microgravity flame spread over a thin solid fuel: oxygen and opposed flow effects Combustion Science and Technology 76 4–6 233 49 10.1080/00102209108951711 Open DOISearch in Google Scholar

Olson SL, Ruff GA, Miller FJ (2008) Microgravity flame spread in exploration atmospheres: pressure, oxygen, and velocity effects on opposed and concurrent flame spread. SAE International Journal of Aerospace 1(1), 239–46. doi: 10.4271/2008-01-2055. OlsonSL RuffGA MillerFJ 2008 Microgravity flame spread in exploration atmospheres: pressure, oxygen, and velocity effects on opposed and concurrent flame spread SAE International Journal of Aerospace 1 1 239 46 10.4271/2008-01-2055 Open DOISearch in Google Scholar

Olson SL, Stouffer SC, Grady T (1989) Diluent effects on quiescent microgravity flame spread over a thin solid fuel. Chemical and Physical Processes in Combustion, no. Copyright (C) 2020 American Chemical Society (ACS). All Rights Reserved.: 70/1–70/4. OlsonSL StoufferSC GradyT 1989 Diluent effects on quiescent microgravity flame spread over a thin solid fuel Chemical and Physical Processes in Combustion no. Copyright (C) 2020 American Chemical Society (ACS). All Rights Reserved.: 70/1 70/4 Search in Google Scholar

Randy Vander Wal, Bryg V, Hays M (n.d.) XPS Analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state. Analytical Chemistry. https://pubs.acs.org/doi/abs/10.1021/ac102365s. (Accessed December 29, 2020). Randy Vander Wal BrygV HaysM (n.d.) XPS Analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state Analytical Chemistry https://pubs.acs.org/doi/abs/10.1021/ac102365s. (Accessed December 29, 2020). 10.1021/ac102365s21322576 Search in Google Scholar

Ruff G, Urban D (2016) Operation and Development Status of the Spacecraft Fire Experiments (Saffire). July. Available at: https://ttu-ir.tdl.org/handle/2346/67728. RuffG UrbanD 2016 Operation and Development Status of the Spacecraft Fire Experiments (Saffire) July Available at: https://ttu-ir.tdl.org/handle/2346/67728. Search in Google Scholar

Serio M, Cosgrove J, Wójtowicz M, Lee J, Wignarajah K, Fisher J (2014b) Torrefaction processing of spacecraft solid wastes. SerioM CosgroveJ WójtowiczM LeeJ WignarajahK FisherJ 2014b Torrefaction processing of spacecraft solid wastes Search in Google Scholar

Serio M, Cosgrove J, Wojtowicz M, Stapleton T, Torres M, Ewert M, Lee J (2018) A Prototype Torrefaction Processing Unit (TPU) for Human Solid Waste in Space. July. Available at: https://ttu-ir.tdl.org/handle/2346/74200. SerioM CosgroveJ WojtowiczM StapletonT TorresM EwertM LeeJ 2018 A Prototype Torrefaction Processing Unit (TPU) for Human Solid Waste in Space July Available at: https://ttu-ir.tdl.org/handle/2346/74200. Search in Google Scholar

Serio M, Wojtowicz M, Cosgrove J, Stapleton T, Lee J (2019) Operational Data for a Full Scale Prototype Torrefaction Processing Unit (TPU) for Spacecraft. July. Available at: https://ttu-ir.tdl.org/handle/2346/84492. SerioM WojtowiczM CosgroveJ StapletonT LeeJ 2019 Operational Data for a Full Scale Prototype Torrefaction Processing Unit (TPU) for Spacecraft July Available at: https://ttu-ir.tdl.org/handle/2346/84492. Search in Google Scholar

Serio M, Wójtowicz M, Cosgrove J, Stapleton T, Nalette T, Ewert M, Lee J, Fisher J (2016) Torrefaction Processing for Human Solid Waste Management. July. Available at: https://ttu-ir.tdl.org/handle/2346/67674. SerioM WójtowiczM CosgroveJ StapletonT NaletteT EwertM LeeJ FisherJ 2016 Torrefaction Processing for Human Solid Waste Management July Available at: https://ttu-ir.tdl.org/handle/2346/67674. Search in Google Scholar

Serio MA, Cosgrove JE, Wójtowicz MA, Lee J, Fisher J (2014a) Use of Pyrolysis Processing for Trash to Supply Gas (TtSG). In 44th International Conference on Environmental Systems. Available at: https://ttu-ir.tdl.org/handle/2346/59668. SerioMA CosgroveJE WójtowiczMA LeeJ FisherJ 2014a Use of Pyrolysis Processing for Trash to Supply Gas (TtSG) In 44th International Conference on Environmental Systems Available at: https://ttu-ir.tdl.org/handle/2346/59668. Search in Google Scholar

Sutliff TJ, Otero AM, Urban DL (2002) Combustion Research Aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox. 12. SutliffTJ OteroAM UrbanDL 2002 Combustion Research Aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox 12 Search in Google Scholar

Turner MF, Fisher JW, Broyan J, Pace G (2014) Generation 2 heat melt compactor development. In 44th International Conference on Environmental Systems. Available at: https://ttu-ir.tdl.org/ttu-ir/handle/2346/59662. TurnerMF FisherJW BroyanJ PaceG 2014 Generation 2 heat melt compactor development In 44th International Conference on Environmental Systems Available at: https://ttu-ir.tdl.org/ttu-ir/handle/2346/59662. Search in Google Scholar

Wang Z, Hu K, Hu Y, Gui Z (2003) Thermal degradation of flame-retarded polyethylene/magnesium hydroxide/poly(ethylene-copropylene) elastomer composites. Polymer International 52(6), 1016–20. doi: 10.1002/pi.1188. WangZ HuK HuY GuiZ 2003 Thermal degradation of flame-retarded polyethylene/magnesium hydroxide/poly(ethylene-copropylene) elastomer composites Polymer International 52 6 1016 20 10.1002/pi.1188 Open DOISearch in Google Scholar

Wetzel J, Surdyk R, Klopotic J, Rangan K (2018) Heat Melt Compactor Test Unit. July. Available at: https://ttu-ir.tdl.org/handle/2346/74255. WetzelJ SurdykR KlopoticJ RanganK 2018 Heat Melt Compactor Test Unit July Available at: https://ttu-ir.tdl.org/handle/2346/74255. Search in Google Scholar

Wheeler R, Hadley N, Dahl R, Abney M, Greenwood Z, Miller L, Medlen A (2012) Advanced Plasma Pyrolysis Assembly (PPA) reactor and process development. In 42nd International Conference on Environmental Systems. San Diego, California: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2012-3553. WheelerR HadleyN DahlR AbneyM GreenwoodZ MillerL MedlenA 2012 Advanced Plasma Pyrolysis Assembly (PPA) reactor and process development In 42nd International Conference on Environmental Systems San Diego, California: American Institute of Aeronautics and Astronautics 10.2514/6.2012-3553 Open DOISearch in Google Scholar

Wheeler R, Holtsnider J, Wambolt S, Abney M, Greenwood Z (2018) Plasma Pyrolysis Assembly (PPA) Zero-g Flight Experiment Development. July. Available at: https://ttu-ir.tdl.org/handle/2346/74078. WheelerR HoltsniderJ WamboltS AbneyM GreenwoodZ 2018 Plasma Pyrolysis Assembly (PPA) Zero-g Flight Experiment Development July Available at: https://ttu-ir.tdl.org/handle/2346/74078. Search in Google Scholar

Zasada F, Piskorz W, Stelmachowski P, Legutko P, Kotarba A, Sojka Z. (2015) Density functional theory modeling and time-of-flight secondary ion mass spectrometric and X-ray photoelectron spectroscopic investigations into mechanistic key events of coronene oxidation: toward molecular understanding of soot combustion. The Journal of Physical Chemistry C 119(12), 6568–80. doi: 10.1021/jp512018z. ZasadaF PiskorzW StelmachowskiP LegutkoP KotarbaA SojkaZ 2015 Density functional theory modeling and time-of-flight secondary ion mass spectrometric and X-ray photoelectron spectroscopic investigations into mechanistic key events of coronene oxidation: toward molecular understanding of soot combustion The Journal of Physical Chemistry C 119 12 6568 80 10.1021/jp512018z Open DOISearch in Google Scholar

eISSN:
2332-7774
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Materials Sciences, Physics