The use of mammalian cells in Low Earth Orbit to study the effects of microgravity on cellular biology is fraught with several possible complicating factors. Cultures of adherent cells are necessarily initiated in the laboratory; they then must be transported to orbit. Doing so often involves delays of hours to days. In addition, cultures are subject to high g loads, accelerations, and intense vibrations on the ascent (Kacena et al., 2003). Once on orbit, it normally takes several days before studies can commence, due to the time required for spacecraft docking to the International Space Station (ISS), unloading the transport vehicle, and processing the delivered material.
Freezing cells before launch provide a way to mitigate these issues. Cells may be cultured in the laboratory following standard protocols and frozen at a controlled rate in media supplemented with 10% v/v dimethyl sulfoxide (DMSO) (Freshney, 1987). When cryopreserved, cultures are isolated from the forces the spacecraft experiences during launch. Since they are effectively
In developing an on-orbit defrost system, we examined alternative methods to rapidly defrost an enclosed large volume of ice. The key to minimizing cell death during the thawing of frozen cells is to ensure rapid heat transfer into the ice mass leading to rapid thawing (Mazur, 1984). The specific heat capacity of the cell culture and material surrounding the frozen cell culture, that is, the BioCell cell culture plate (BioServe Space Technologies; Boulder, CO) (Figure 1), determines the rate at which the cell culture temperature rises from a solid to liquid to the phase transition. The specific heat capacity is defined as:
Figure 1
(A) Engineering drawing of BioCell and (B) BioCell with frozen cell culture/media. The needle-less Luer connectors allow the exchange of media.

Figure 2
Prototype aluminum block designed to defrost frozen BioCells on orbit. Both sides of this block were heated to 43°C and positioned on the frozen BioCell. It was ultimately determined that aluminum was not effective in rapidly defrosting frozen cultures.

Fibroblastic osteoprogenitor cells (MC3T3-E1; subclone 4) (ATCC; Manassas, VA) were cultured on modified culture plates developed by BioServe Space Technologies (Boulder, CO) (Figure 1). These culture vessels (BioCells) are constructed of an aluminum frame surrounding a 2 mm thick tissue-culture treated polystyrene (Corning; Corning, NY) on one side and a 0.1 mm thick gas permeable FEP Teflon membrane on the other side; each has a surface area of 50 cm2 containing a volume of 30 ml. Ports in the frame allow for cell seeding as well as the introduction and withdraw of culture media.
Cryopreserved cells may be stored for an extended period in liquid nitrogen (77°K; −196°C). During cryopreservation, the rate of cooling is crucial to maximizing cell survival upon defrosting. Cellular injury during freezing is typically associated with osmotic differences across the cell membrane and the formation of intracellular ice. If cooled at a slow controlled rate (−1°C/min), water migrates out of the intracellular space through exosmosis so that the cell dehydrates and does not freeze intracellularly. If cooling is too rapid, the interior of the cell achieves thermal equilibrium with the extracellular space by freezing (Seth, 2012). For this project, cells were defrosted and cultured in T-175 or T-225 flasks per standard protocols (Freshney, 1987). Cells were then allowed to proliferate to approximately 80% confluence and passed to BioCells at either 10,000/cm2 or 50,000/cm2. After 24 h in culture, media was replaced with cryopreservation media, composed of alpha-MEM (Gibco/ThermoFisher; Waltham, MA) + 10% Fetal Bovine Serum (v/v) (Sigma-Aldrich; St Louis, MO) + 1% penicillin/streptomycin (10k U/ml/10k U/ml) (Gibco/ThermoFisher; Waltham, MA) and supplemented with 10% DMSO (v/v) (Sigma-Aldrich; St Louis, MO). Cultures were then frozen at a controlled rate of −1°C/min (Seth, 2012) (Cryomed Controlled-Rate Freezer; Thermo-Fisher Scientific; Waltham, MA) and stored at −80°C in a metal enclosure (PHAB; BioServe Space Technologies; Boulder, CO) (Figure 3). SpaceX CRS-9 (launched from Kennedy Space Center, FL July 18, 2016) transported these frozen cell cultures to the ISS in a POLAR freezer (<−80°C) (berthed July 20, 2016). Once on orbit, frozen BioCells were stored in the Minus Eighty-Degree Laboratory Freezer for ISS (MELFI) at −95°C until the start of the experiment. The anticipated experiment start was delayed several months due to the failure of an essential incubator component. A replacement part and fresh frozen culture media were later delivered to ISS (February 2017), and the experiment was initiated on May 2, 2017.
Figure 3
Metal enclosure housing BioCells (PHAB). Note the vents at the top of the enclosure allowing gas exchange while it is maintained in the 37°C, 5% CO2 incubator.

Rapid thawing is necessary to minimize the formation of ice crystals and osmotic stressors that can damage cryopreserved cells (Seth, 2012; Ragoonanan et al., 2013). To accomplish this, we have developed a defrost apparatus that consists of two connected ethylene-vinyl acetate bags (0.35 mm thick) closed with clips (Figure 4). One bag is preloaded with water acting as a reservoir, the other, smaller, bag is empty. A clip is situated over the isthmus between them, to isolate them. A 60 ml syringe connects a port connected to the empty bag, allowing for the complete withdrawal of air, while another 60 ml syringe transfers the remaining water from the thawing chamber back to the reservoir.
Figure 4
BioCell thaw system. The bag labeled “Reservoir” contains water heated to 43°C. The frozen BioCell is placed in the bag labeled “Thawing Chamber” which is then sealed. Air is evacuated, and a large clip is opened between the two bags, and warm water pushed in. The thawing bag is again sealed. With rocking/kneading, the BioCell is defrosted within 2–3 min. The clip between the two bags is then opened, and water is pushed back into the reservoir bag.

To thaw frozen BioCells, the system is preheated to 43°C in an oven aboard the ISS. This temperature was chosen based on trials with frozen (cell free) BioCells (data not shown). It was determined that since the relatively small volume of water used by this system cools fairly rapidly it is necessary to initiate the process with a slightly higher temperature than the standard of 37°C to quickly complete defrost. This is demonstrated in Figure 5, which shows that, in the laboratory, a starting temperature of 43°C defrosts a BioCell within 2 min from a temperature of −80°C. The BioCell was removed from MELFI and placed in the thawing chamber bag. This bag was then sealed by folding the opening and clamping shut with a clip. Air was evacuated from this bag by a syringe attached to the vacuum port. The large yellow clip depicted in Figure 4 was opened, and warm water was pushed from the reservoir into the thawing chamber. This clip was then re-closed, and the thawing chamber was gently massaged and lightly shaken (while holding the BioCell in place at a corner) to ensure consistent mixing of the warmed water surrounding the BioCell. After the BioCell had defrosted, the large clip was opened, and the remaining water pushed back to the reservoir from the thawing chamber which was again sealed by the large clip. The remaining water in the thawing chamber was removed through the syringe labeled “water removal” in Figure 4. Water sucked into this syringe was pushed into the reservoir using an inline one-way check valve. After all water had been evacuated from the thawing chamber bag, the clip which closed it was removed and the BioCell removed. This process took 2–3 min. The defrosted culture media + DMSO was then exchanged with fresh media, and the culture was placed in a 37°C, 5% CO2 incubator (i.e., Space Automated Bioprocessing Laboratory designed and built by BioServe Space Technologies; Boulder, CO). The defrost system was then returned to the 43°C oven and another employed for the next frozen culture removed from the MELFI. Twenty-four cultures were defrosted and preserved on the ISS while 24 cultures were employed as asynchronous ground controls. Cell survival post-defrost
Figure 5
Time course for thawing of BioCell from −80°C;

Figure 6
Photomicrograph of MC3T3 osteoblastic cells post-defrost

Quality and quantity of RNA recovered from flight cultures as determined by UV spectroscopy.
SN1 – D | 2.13 | 21.04 |
SN1 – E | 2.05 | 12.76 |
SN1 – F | 2.10 | 19.43 |
SN2 – D | 2.06 | 4.81 |
SN2 – E | 2.10 | 8.86 |
SN2 – F | – | 0.00 |
SN3 – D | – | 0.00 |
SN3 – E | 2.10 | 18.22 |
SN3 – F | 2.10 | 8.25 |
SN4 – D | 2.00 | 2.24 |
SN4 – E | 2.12 | 39.41 |
SN4 – F | 2.14 | 39.49 |
SN1: Confluent; standard media. 13d culture.
SN2: Proliferating; standard media. 13d culture.
SN3: Confluent; differentiation media. 20d culture.
SN4: Proliferating; differentiation media. 20d culture.
Cellular nucleic acids were stabilized on-orbit with RNAprotect (Qiagen). Upon return, RNA was isolated with a guanidine-isothiocyanate–containing lysis buffer and purified by passing through a silica membrane that specifically binds RNA (Rnasy; Qiagen). The ratio of optical absorbance at 260 l and 280 l wavelengths is an indicator of RNA integrity and purity. Values above 1.8 are considered ideal (Glasel, 1995). The figure key refers to specific experimental treatments.
When a BioCell is removed from a −80°C environment and placed in the air at 20°C ambient air temperature, it warms at a rate of 9.9° ± 0.8°C/min (
We here describe a novel apparatus designed to consistently defrost cryopreserved cell cultures in the ISS environment. The system is closed and is easily deployed, thereby protecting the ISS crew from exposure to free-floating fluids. It can potentially be employed to defrost a variety of mammalian cell cultures and other biological materials.
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Quality and quantity of RNA recovered from flight cultures as determined by UV spectroscopy.
SN1 – D | 2.13 | 21.04 |
SN1 – E | 2.05 | 12.76 |
SN1 – F | 2.10 | 19.43 |
SN2 – D | 2.06 | 4.81 |
SN2 – E | 2.10 | 8.86 |
SN2 – F | – | 0.00 |
SN3 – D | – | 0.00 |
SN3 – E | 2.10 | 18.22 |
SN3 – F | 2.10 | 8.25 |
SN4 – D | 2.00 | 2.24 |
SN4 – E | 2.12 | 39.41 |
SN4 – F | 2.14 | 39.49 |