Protein crystallography is the predominate technique used to determine the three-dimensional structure of biological macromolecules. High-resolution three-dimensional structures provide information that is used to determine the function of proteins and other biomolecules and for drug discovery in cases where proteins play a role in different disorders or diseases. Growing high-quality crystals of these biomolecules enhances the ability to obtain X-ray data at a high resolution, thereby enabling more accurate three-dimensional structure determinations. Data and information obtained from crystallographic investigations are important for macromolecular engineering to optimize biomolecules for various applications in biomedical research. Macromolecular transport in crystallization processes has been shown to directly affect crystal quality (García-Ruiz et al., 2016; McPherson et al., 1999; Vekilov, 1999). Gravity-dependent flow effects, including convection and sedimentation, affect the crystal growth processes on earth (Lee and Chernov, 2002; Otálora et al., 2001; Wilcox, 1983). Density-driven solution convection might be expected to force molecules to rapidly flow past the growing crystal, thus bringing impurities such as inorganic and organic particles and macromolecular aggregates to growing crystal surfaces (Lee and Chernov, 2002). Different concentrations at different parts of a crystal created with the flow patterns may lead to nonuniform growth conditions (DeLucas et al., 1986; Wilcox, 1983). Sedimentation is another gravity-dependent effect that significantly alters the crystal growth process on earth. Depending on the density of the growing crystals versus the solution density, crystals growing in a 1G environment migrate to the top, bottom, or wall of a crystallization container (Carotenuto et al., 2002; DeLucas et al., 1986). Thus, sedimentation creates crystal accumulation on the surface, bottom, or wall of a crystallization container, which may interrupt further crystal growth (DeLucas et al., 1986; García-Ruiz et al., 2001a; Wilcox, 1983). Diffusion-controlled crystal growth processes in the absence of convection (and the elimination of the sedimentation effect) may be beneficial for crystal quality. Therefore, the microgravity environment appears to be ideally suited for growing crystals with improved quality (Kuranova et al., 2011; McPherson et al., 1999; Snell et al., 1997). In this context, it is important to investigate the effect of crystal growth rates versus crystal quality and size.
The first reported protein crystallization experiments in microgravity, performed in 1984, described the growth of lysozyme and b-galactosidase crystals on Spacelab-1 (Littke and John, 1984). Since then in subsequent space shuttle missions, unmanned satellite missions, on the Russian space station and on the International Space Station (ISS), more than 100 different proteins have been crystallized under microgravity conditions (DeLucas et al., 1986; Krauspenhaar et al., 2002; Snell et al., 1997; Timofeev et al., 2012a; Vallazza et al., 2002). In 1989, Asano et al. performed a series of crystal growth experiments for bovine pancreatic ribonuclease
Macromolecule purity is a major parameter in the crystal growth process such that removal of impurities and elimination of macromolecular heterogeneity improve the probability of growing higher quality crystals (Giege et al., 1986; McPherson et al., 1999; Vekilov and Rosenberger 1996). Crystal defects often originate from incorporation of molecular aggregates and other impurities into the lattice of a growing crystal (Adawy et al., 2015; Giege et al., 1986; McPherson et al., 1999; Vekilov and Rosenberger 1996). Hen egg-white lysozyme (HEWL) has been crystallized in the presence of HEWL dimers on earth and under microgravity conditions to investigate the effect of impurity incorporation into a growing crystal. It was observed that the HEWL crystals grown under microgravity conditions contain 4.5 times less HEWL dimers than control experiments performed on earth (Carter et al., 1999). Another experiment demonstrated that the presence of chicken egg-white lysozyme dimers in the crystallization solutions in microgravity reduced crystal size, increased mosaicity, and reduced the signal-to-noise ratio of the X-ray data (Snell et al., 2001). Yet in another investigation, no significant difference in impurity incorporation between microgravity and ground crystals was observed (Snell et al., 2001). To further explore the effect of macromolecular transport phenomena in crystallization processes, experiments on the ISS were performed. For this investigation,
The dispersity and particle radius distribution of
To investigate the amount of impurity incorporated into growing crystals, stable fluorescently labeled protein aggregates were prepared and subsequently added at different percent concentrations to nonlabeled monomeric protein suspensions. The
The calculated DOL was approximately 4. The protein-dye conjugate was concentrated to 10 mg/ml final concentration using Millipore Amicon® ultra-centrifugal concentrators (Merck Millipore). For lysozyme aggregate labeling, a solution of buffered lysozyme dimer at 2 mg/mL was mixed with Alexa Fluor® 594 NHS ester at 22°C and incubated for 1 h. Unbound dye was removed via spin concentration (500 μL 30
Crystallization experiments were performed using the counter/ liquid–liquid diffusion technique in capillaries of 100 mm length, 3 mm width, and 0.3 mm inner diameter (VitroCom). The capillaries were filled with 37 μL of precipitant and 37 μL of protein solution (doped with different percentages of fluorescently labelled protein aggregate using syringes (Hamilton)). Lysozyme was prepared in 0.1 M NaOAc (pH 4.6) solution with the precipitant solution consisting of 1 M NaCl and 0.1 M NaOAc (pH 4.6). A sample of
Two series of experiments were performed on ISS, one during 26.02.2017 to 10.03.2017 and a second during 16.06.2017 to 23.06.2017. The cassettes were launched aboard SpaceX (SpX-10) in cold stowage at -80°C. Upon reaching the ISS, the cassettes were transferred to ISS cold stowage (-80°C) while awaiting science operations. The cassettes were removed from cold stowage, thawed, and installed onto the LMM petri plate using Velcro. The LMM petri plate was installed in the LMM base adapter and the LMM prepared for powered science operations. The initial protein crystallization experiments, LMM Biophysics-1, were performed using the ISS LMM at a temperature of 20–23°C. Powered operations began as soon as practical after installation was completed
Figure 1
Hardware and capillary design for LMM Biophysics-1 protein crystallization experiments. (A) Representative images of flight cassette with eight capillaries. The left image shows a cassette with eight capillaries. The image on the right shows a cassette with aligned and fastened top cover. (B) An empty capillary. (C) Schematic diagram illustrating the capillary shape and coordinates.

with initiation of the crystal search phase occurring within 4 h of cassette installation. The growth of crystals was monitored for several days. Crystal images were recorded with 2.5´, 10´ objectives. To investigate crystal growth rate and the fluorescence of crystals, Texas Red and FITC fluorescence filters were used.
To investigate the incorporation of impurities into growing crystals for each protein, confocal fluorescence imaging experiments were performed. Crystal fluorescence images of both proteins were recorded on ISS using the LMM microscope, 2.5´ and 10´ objectives. Fluorescence imaging experiments on ground were performed using a Zeiss LSM 710 confocal laser scanning microscope (Carl Zeiss Microscopy). The capillaries were scanned with a 10´ magnification lens. To investigate the fluorescence of
The image-analysis software
The flight cassettes were installed on the LMM microscope after sample thawing to perform crystallization experiments. Grown lysozyme crystals showed nearly similar morphologies in each capillary and were photodocumented in the LMM (Figure 2A)
Figure 2
Protein crystallization in microgravity applying the counter diffusion technique in the capillary. Images were recorded using the ISS LMM microscope, 2.5´ objective. (A) Lysozyme crystals. Images were recorded at

The length of the major axis for lysozyme and
Time-lapse images for different capillary areas were recorded to investigate crystal growth rates for lysozyme (Figure 3) and
Figure 3
Growth of lysozyme crystals in microgravity. Time-lapse images were recorded for three different areas (A, B, C) in capillary using LMM microscope with 2.5´ magnification. The imaging time extended to

Figure 4
Growth of

According to the experimental results, the average growth rate (1.9 ± 0.23 mm/h) for lysozyme crystals with the length of major axis < 350 mm was significantly lower (statistical
Figure 5
Comparative growth rate and size distribution values (the length of major axis) of crystals along the capillary. Different regions (areas) along the capillary were measured from the protein end of the capillary toward the protein–precipitant interface. Error bars represent standard deviations of the average. Significance within a 99% confidence interval was determined using the Student’s

The average size of
To investigate the incorporation of impurities into growing crystals for each protein, fluorescently labeled protein aggregates were prepared that simulated protein aggregate impurities in solution. For crystallization experiments in microgravity, samples with different protein aggregate ratios were prepared.
The LMM fluorescence micrograph of a capillary sample containing
Figure 6
Crystals of

Since 1984, protein crystallization experiments have been conducted in microgravity to obtain crystals of higher X-ray diffraction quality (DeLucas et al., 1986; Kundrot et al., 2001; Littke and John, 1984; McPherson et al., 1999; Snell et al., 1997). It is assumed that a convection-free, diffusion-controlled environment will support growth of crystals of higher quality, which can be achieved using microgravity. The capillary counter diffusion method is an efficient technique to investigate diffusion-limited mass transport phenomena in macromolecular crystallization (García-Ruiz et al., 2001b; García-Ruiz, 2003).
This investigation addresses the following hypothesis:
Experiments were performed in microgravity and in laboratory controls to compare the effect of diffusional mass transport on crystal growth rate, crystal size, and impurity incorporation. The results for both proteins, lysozyme and
In previously reported studies, crystallization experiments were performed to investigate the relation between impurity incorporation and protein crystal growth process (Adawy et al., 2015; Carter et al., 1999; Snell et al., 2001). Our study involves fluorescently labeled protein aggregates to represent the impurities in the growth solution. The
In summary, the manuscript reports that comparative crystallization experiments using the ISS LMM facility were successfully performed in microgravity using an innovative capillary counter diffusion technique. Future studies will involve a statistical analysis of the percentage incorporation of impurities (via quantitative analysis of total fluorescence/crystal volume) incorporated into microgravity versus unit gravity grown crystals. This future research will address hypothesis 2: the diffusion-limited crystal growth environment producing a self-purifying process may dominate due to slower transport rates for larger aggregates in a diffusion-limited environment. This hypothesis assumes that crystal growth in microgravity benefits from a principally purer solution (less aggregate incorporation) than crystals in the presence of convective forces (Carter et al., 1999; McPherson et al., 1999).
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Polyethersulfone (PES) Membrane on Agar Plates as a Plant Growth Platform for Spaceflight A Novel Approach to Teaching a General Education Course on Astrobiology Short-Term Hypergravity-Induced Changes in Growth, Photo synthetic Parameters, and Assessment of Threshold Values in Wheat ( Triticum aestivum L.)Nonlinear Agglomeration of Bimodal Colloids under Microgravity Design of Spaceflight Hardware for Plant Growth in a Sealed Habitat for Experiments on the Moon