1. bookVolume 37 (2018): Issue 4 (December 2018)
Journal Details
License
Format
Journal
eISSN
1337-947X
First Published
24 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Influence of Salinity on Physiological Response of the Bearded Horse Mussel Modiolus barbatus and Noah’s Ark Shell Arca noae

Published Online: 07 Dec 2018
Page range: 345 - 357
Journal Details
License
Format
Journal
eISSN
1337-947X
First Published
24 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Bearded horse mussel Modiolus barbatus and Noah’s ark shell Arca noae are a species of interest for the diversifying shellfish aquaculture on the south-eastern coast of the Adriatic. In this study, oxygen consumption (OC), total ammonia excretion (TAM) and clearance rate (CR) responses to the changes in seawater salinity (37, 30, 25 and 20) were investigated in the laboratory. There is a statistically significant influence of salinity on oxygen consumption and TAM excretion of Noah’s ark shell, while the time of exposure to different salinities is significantly correlated to TAM excretion by the bearded horse mussel. Mean OC of Noah’s ark shell ranged from 0.14 ± 0.06 to 0.54 ± 0.27 mg O2g−1h−1 and that of bearded horse mussel from 0.18 ± 0.17 to 0.26 ± 0.14 mg O2g−1h−1. Mean values of TAM excretion of Noah’s ark shell ranged from 2.14 ± 1.52 to 7.22 ± 6.04 μmol g−1 h−1 and for bearded horse mussel from 0.98 ± 0.53 to 2.78 ± 2.96 μmol g−1 h−1. Salinity and exposure time have a significant influence on the CR of Noah’s ark shell, whilst salinity has been found to be the determining factor for the bearded horse mussels’ CR. Mean values of Noah’s ark shell CR ranged from 0.96 ± 0.54 to 4.18 ± 1.15 l h−1g−1 and for bearded horse mussel from 2.43 ± 0.99 to 4.23 ± 0.84 l h−1g−1. Higher oxygen consumption to total ammonia excretion (O:N) ratios at lower salinities indicated the use of proteins as a metabolic substrate for both species. Noah’s ark shell has greater energy expenditure related to respiration and TAM excretion than the bearded horse mussel.

Keywords

Albentosa, M., Fernández-Reiriz, M.J., Labarta, U. & Pérez-Camacho A. (2007). Response of two species of clams, Ruditapes decussatus and Venerupis pullastra, to starvation: physiological and biochemical parameters. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 146(2), 241−249. DOI: 10.1016/j.cbpb.2006.10.109.10.1016/j.cbpb.2006.10.109Open DOISearch in Google Scholar

Almada-Villela, P.C. (1984). The effects of reduced salinity on the shell growth of small Mytilus edulis. J. Mar. Biol. Assoc. UK, 64, 171−182. DOI:10.1017/S0025315400059713.10.1017/S0025315400059713Open DOISearch in Google Scholar

Bayne, B.L. & Thompson R.J. (1970). Some physiological consequences of keeping Mytilus edulis in the laboratory. Helgol. Wiss. Meersunters., 20(1−4), 526−552.Search in Google Scholar

Bayne, B.L. & Scullard C. (1977a). An apparent specific dynamic action in Mytilus edulis L. J. Mar. Biol. Assoc. UK, 57(02), 371−378. DOI: 10.1017/S002531540002181010.1017/S0025315400021810Search in Google Scholar

Bayne, B.L. & Scullard C. (1977b). Rates of nitrogen excretion by species of Mytilus (Bivalvia: Mollusca). J. Mar. Biol. Assoc. UK, 57(02), 355−369. DOI: 10.1017/S0025315400021809.10.1017/S0025315400021809Search in Google Scholar

Bayne, B.L. & Newell R.C. (1983). Physiological energetics of marine molluscs. In A.S.M. Saleuddin & K.M. Wilbur (Eds.), The mollusca (pp. 407−515). Vol. 4 Physiology, Part 1. New York: Academic Press.Search in Google Scholar

Berger, V.J. & Kharazova A.D. (1997). Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia, 355, 115−126. DOI: 10.1007/978-94-017-1907-0_12.10.1007/978-94-017-1907-0_12Open DOISearch in Google Scholar

Brown, M.R. (1991). The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol., 145(1), 79−99. DOI: 10.1016/0022-0981(91)90007-J10.1016/0022-0981(91)90007-JOpen DOISearch in Google Scholar

Corner, E.D.S. & Cowey C.B. (1968). Biochemical studies on the production of marine zooplankton. Biol. Rev., 43(4), 393−426. DOI: 10.1111/j.1469-185X.1968.tb00965.x.10.1111/j.1469-185X.1968.tb00965.xOpen DOISearch in Google Scholar

Coughlan, J. (1969). The estimation of filtering rate from the clearance of suspensions. Mar. Biol., 2, 356−358. DOI: 10.1007/BF00355716.10.1007/BF00355716Open DOISearch in Google Scholar

Ezgeta-Balić, D., Rinaldi, A., Peharda, M., Prusina, I., Montalto, V., Niceta, N. & Sarà G. (2011). An energy budget for the subtidal bivalve Modiolus barbatus (Mollusca) at different temperatures. Mar. Environ. Res., 71(1), 79–85. DOI: 10.1016/j.marenvres.2010.10.005.10.1016/j.marenvres.2010.10.005Open DOISearch in Google Scholar

Gilek, M., Tedengren M. & Kautsky N. (1992). Physiological performance and general histology of the blue mussel, Mytilus edulis L., from the Baltic and North seas. Neth. J. Sea Res., (30), 11−21. DOI:10.1016/0077-7579(92)90041-C.10.1016/0077-7579(92)90041-Open DOISearch in Google Scholar

Glavić, N., Vlašić, M., Bolotin, J., Dupčić Radić, I., Hrustić, E., Kožul, V. & Antolović N. (2018). The size driven variations in physiological responses of the Bearded Horse Mussel Modiolus barbatus and the Noah’s Ark Shell Arca noae. Turk. J. Fish. Aquat. Sc., 18, 1355−1362. DOI: 10.4194/1303-2712-v18_12_03.10.4194/1303-2712-v18_12_03Open DOISearch in Google Scholar

Hamer, B., Jakšić, Ž., Pavičić-Hamer, D., Perić, L., Medaković, D., Ivanković, D., Pavičić, J., Zilberberg, C., Schröder, H.C., Mϋller, W.E.G., Smodlaka, N. & Batel R. (2008). Effect of hypoosmotic stress by low salinity acclimation of Mediterranean mussels Mytilus galloprovincialis on biological parameters used for pollution assessment. Aquat. Toxicol., 89, 137−151. DOI: 10.1016/j.aquatox.2008.06.015.10.1016/j.aquatox.2008.06.015Open DOISearch in Google Scholar

Hawkins, A.J.S., Salkeld, P.N., Bayne, B.L., Gnaiger, E. & Lowe D.M. (1985). Feeding and resource allocation in the mussel Mytilus edulis: Evidence for time-averaged optimization. Mar. Ecol. Prog. Ser., 20(3), 273−287. https://www.jstor.org/stable/2481690510.3354/meps020273Search in Google Scholar

Hawkins, A.J.S., Magoulas A., Heral M., Bougrier S., Naciri-Graven Y., Day A.J. & Kotoulas G. (2000). Separate effects of triploidy, parentage and genomic diversity upon feeding behaviour, metabolic efficiency and net energy balance in the Pacific oyster Crassostrea gigas. Genet. Res., 76(03), 273−284.10.1017/S0016672300004766Search in Google Scholar

Hawkins, A.J.S., Duarte, P., Fang, J.G., Pascoe, P.L., Zhang, J.H., Zhang, X.L. & Zhu M.Y. (2002). A functional model of responsive suspension-feeding and growth in bivalve shellfish, configured and validated for the scallop Chlamys farreri during culture in China. J. Exp. Mar. Biol. Ecol., 281(1), 13−40. DOI: 10.1016/S0022-0981(02)00408-2.10.1016/S0022-0981(02)00408-2Open DOISearch in Google Scholar

Ivančić, I. & Degobbis D. (1984). An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res., 18(9), 1143−1147. DOI: 10.1016/0043-1354(84)90230-6.10.1016/0043-1354(84)90230-6Open DOISearch in Google Scholar

Jasprica, N., Carić, M., Bolotin, J. & Rudenjak-Lukenda M. (1997). The Mediterranean mussel (Mytilus galloprovincialis Lmk.) growth rate response to phytoplankton and microzooplankton population densities in the Mali Ston Bay (Southern Adriatic). Period. Biol., 99(2), 255−264.Search in Google Scholar

Kang, J., Lee, S.S. & Han K.N. (2014). Clearance rate and feeding according to water temperature and salinity condition in the surf clam, Mactra veneriformis. Korean Journal of Malacology, 30(2), 101−106. DOI: 10.9710/kjm.2014.30.2.101.10.9710/kjm.2014.30.2.101Open DOISearch in Google Scholar

Koehn, R.K. & Bayne B.L. (1989). Towards a physiological and genetical understanding of the energetics of the stress response. Biol. J. Linn. Soc. 37(1−2), 157–171. DOI: 10.1111/j.1095-8312.1989.tb02100.x.10.1111/j.1095-8312.1989.tb02100.xOpen DOISearch in Google Scholar

Landes, A., Dolmer, P., Poulsen, L.K., Petersen, J.K. & Vismann B (2015). Growth and respiration in blue mussels (Mytilus spp.) from different salinity regimes. J. Shellfish Res., 34(2), 373−382. DOI: 10.2983/035.034.0220.10.2983/035.034.0220Open DOISearch in Google Scholar

Levinton, J., Doall, M., Ralston, D., Starke, A. & Allam B. (2011). Climate change, precipitation and impacts on an estuarine refuge from disease. PLoS One, 6(4), e18849. DOI: 10.1371/journal.pone.0018849.10.1371/journal.pone.0018849308423621552552Open DOISearch in Google Scholar

Mladineo, I., Peharda, M., Orhanović, S., Bolotin, J., Pavela-Vrančić, M. & Treursić B. (2007). The reproductive cycle, condition index and biochemical composition of the horse-bearded mussel Modiolus barbatus. Helgol. Mar. Res., 61(3), 183−192. DOI: 10.1007/s10152-007-0065-8.10.1007/s10152-007-0065-8Open DOISearch in Google Scholar

Navarro, J.M. (1988). The effects of salinity on the physiological ecology of Choromytilus chorus (Molina, 1782) (Bivalvia : Mytilidae). J. Exp. Mar. Biol. Ecol., 122 (1), 19−33. DOI: 10.1016/0022-0981(88)90209-2.10.1016/0022-0981(88)90209-2Open DOISearch in Google Scholar

Navarro, J.M. & Gonzalez C.M. (1998). Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities. Aquaculture, 167 (3–4), 315−327. DOI: 10.1016/S0044-8486(98)00310-X.10.1016/S0044-8486(98)00310-XOpen DOISearch in Google Scholar

Paganini, A, Kimmerer, WJ & Stillman J.H. (2010). Metabolic responses to environmental salinity in the invasive clam Corbula amurensis. Aquatic Biology, 11(2), 139−147. DOI: 10.3354/ab00304.10.3354/ab00304Open DOISearch in Google Scholar

Peharda, M., Richardson, C.A., Onofri, V., Bratoš, A. & Crnčević M. (2002). Age and growth of the bivalve Arca noae L. in the Croatian Adraitic Sea. J. Molluscan Stud., 68, 307−310. DOI: 10.1093/mollus/68.4.307.10.1093/mollus/68.4.307Open DOISearch in Google Scholar

Peharda, M., Mladineo, I., Bolotin, J., Kekez, L. & Skaramuca B. (2006). The reproductive cycle and potential protoandric development of the Noah’s Ark shell, Arca noae L.: Implications for aquaculture. Aquaculture, 252, 317−327. DOI: 10.1016/j.aquaculture.2005.07.007.10.1016/j.aquaculture.2005.07.007Open DOISearch in Google Scholar

Peharda, M., Richardson, C.A., Mladineo, I., Šestanović, S., Popović, Z., Bolotin, J. & Vrgoč N. (2007). Age, growth and population structure of Modiolus barbatus from the Adriatic. Mar. Biol., 151, 629−638. DOI: 10.1007/s00227-006-0501-3.10.1007/s00227-006-0501-3Open DOISearch in Google Scholar

Peharda, M., Ezgeta-Balić, D., Davenport, J. & Vrgoč N. (2013). The potential for aquaculture of the bearded horse mussel (Modiolus barbatus) and Noah’s Ark shell (Arca noae) in southern Croatia. Aquac. Int., 21(3), 639−653. DOI: 10.1007/s10499-012-9598-1.10.1007/s10499-012-9598-1Open DOISearch in Google Scholar

Pierce, Jr S.K. & Greenberg M.J. (1972). The nature of cellular volume regulation in marine bivalves. J. Exp. Biol., 57, 681−692.Search in Google Scholar

Pleissner, D., Lundgreen, K., Lüskow, F. & Riisgård H.U. (2013). Fluorometer controlled apparatus designed for long-duration algal-feeding experiments and environmental effect studies with mussels. J. Mar. Biol., 2013. DOI: 10.1155/2013/401961.10.1155/2013/401961Open DOISearch in Google Scholar

Pörtner, H-O. (2012). Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser., 470, 273−290. DOI: 10.3354/meps10123.10.3354/meps10123Open DOISearch in Google Scholar

Resgalla, Jr C., Brasil, E.S. & Salomão L.C. (2007). The effect of temperature and salinity on the physiological rates of the mussel Perna perna (Linnaeus 1758). Braz. Arch. Biol. Technol., 50(3), 543−556. DOI: 10.1590/S1516-89132007000300019.10.1590/S1516-89132007000300019Open DOISearch in Google Scholar

Rodrigues, L.H.R., Arenzon, A., Raya-Rodriguez, M.T. & Fontoura N.F. (2011). Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. Journal of Environmental Chemistry and Ecotoxicology, 3(8), 225−228.Search in Google Scholar

Savina, M. & Pouvreau S. (2004). A comparative ecophysiological study of two infaunal filter-feeding bivalves: Papia rhomboϊdes and Glycymeris glycymeris. Aquaculture, 239(1−4), 289−306. DOI: 10.1016/j.aquaculture.2004.05.029.10.1016/j.aquaculture.2004.05.029Open DOISearch in Google Scholar

Shin, Y.K., Kim, B.H., Oh, B.S., Jung, C.G., Sohn, S. & Lee J.S. (2006). Physiological responses of the ark shell Scapharca broughtonii (Bivalvia: Arcidae) to decreases in salinity. Fisheries and Aquatic Sciences, 9(4), 153−159. DOI: 10.5657/fas.2006.9.4.153.10.5657/fas.2006.9.4.153Open DOISearch in Google Scholar

Sobral, P. & Widdows J. (1997). Effects of elevated temperatures on the scope for growth and resistance to air exposure of the clam Ruditapes decussatus (L.), from southern Portugal. Sci. Mar., 61, 163−171.Search in Google Scholar

Solorzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr., 14(5), 799−801. DOI: 10.4319/lo.1969.14.5.0799.10.4319/lo.1969.14.5.0799Open DOISearch in Google Scholar

Tang, B., Liu, B., Yang, H. & Xiang J. (2005). Oxygen consumption and ammonia-N excretion of Meretrix meretrix in different temperature and salinity. Chin. J. Oceanol. Limnol., 23, 469–474. DOI: 10.1007/BF02842693.10.1007/BF02842693Open DOISearch in Google Scholar

Wang, Y., Hu, M., Wong, W.H., Shin, P.K. & Cheung S.G. (2011). The combined effects of oxygen availability and salinity on physiological responses and scope for growth in the green-lipped mussel Perna viridis. Mar. Pollut. Bull., 63(5), 255−261. DOI: 10.1016/j.marpolbul.2011.02.004.10.1016/j.marpolbul.2011.02.004Open DOISearch in Google Scholar

Widdows, J. (1978). Physiological indices of stress in Mytilus edulis. J. Mar. Biol. Assoc. UK, 58(01), 125−142. DOI: 10.1017/S0025315400024450.10.1017/S0025315400024450Open DOISearch in Google Scholar

Widdows, J. & Johnson D. (1988). Phyisological energetics of Mytilus edulis: Scope for growth. Mar. Ecol. Prog. Ser., 46, 113−121. www.jstor.org/stable/24827572.10.3354/meps046113Search in Google Scholar

Widdows, J., Burns, K.A., Menon, N.R., Page, D.S. & Soria S. (1990). Measurement of physiological energetics (scope for growth) and chemical contaminants in mussels (Arca zebra) transplanted along a contamination gradient in Bermuda. J. Exp. Mar. Biol. Ecol., 138(1−2), 99−117. DOI: 10.1016/0022-0981(90)90179-G.10.1016/0022-0981(90)90179-Open DOISearch in Google Scholar

Widdows, J. & Staff F. (2006). Biological effects of contaminants: measurement of scope for growth in mussel. ICES Techniques in Marine Environmental Sciences, 40, 1−30.Search in Google Scholar

Williams, J.B. (1984). Respiratory changes in the euryhaline clam, Mulinia lateralis (Say), over a range of temperature and salinity combinations. J. Exp. Mar. Biol. Ecol., 81(3), 269−280. DOI: 10.1016/0022-0981(84)90146-1.10.1016/0022-0981(84)90146-1Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo