Cite

[1] Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol. 1994;28(12):2045-53. DOI: 10.1021/es00061a012.10.1021/es00061a012Search in Google Scholar

[2] Cantrell KJ, Kaplan DI, Wietsma TW. Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater. 1995;42(2):201-12. DOI: 10.1016/0304-3894(95)00016-N.10.1016/0304-3894(95)00016-NSearch in Google Scholar

[3] Wing MR. Apparent first-order kinetics in the transformation of 1,1,1-trichloroethane in groundwater following a transient release. Chemosphere. 1997;34(4):771-81. DOI: 10.1016/S0045-6535(97)00004-0.10.1016/S0045-6535(97)00004-0Search in Google Scholar

[4] Cook SM. Assessing the use and application of zero-valent iron nanoparticle technology for remediation at contaminated sites. 2009:39. Available from: https://clu-in.org/download/techdrct/cook_%20zvi_aug2009.pdf.Search in Google Scholar

[5] Xiong Z, Kaback D, Bennett PJ. A case study of using zero-valent iron nanoparticles for groundwater remediation. AGU Fall Meeting Abstracts. 2011:H53B-1426. Available from: https://ui.adsabs.harvard.edu/abs/2011AGUFM.H53B1426X/abstract.Search in Google Scholar

[6] Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, et al. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res. 2012;19(2):550-8. DOI: 10.1007/s11356-011-0576-3.10.1007/s11356-011-0576-321850484Search in Google Scholar

[7] Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard Mater. 2014;267:194-205. DOI: 10.1016/j.jhazmat.2013.12.062.10.1016/j.jhazmat.2013.12.06224457611Search in Google Scholar

[8] Phenrat T, Lowry GV, Babakhani P. Nanoscale zerovalent iron (NZVI) for environmental decontamination: A brief history of 20 years of research and field-scale application. In: Phenrat T, Lowry GV, editors. Nanoscale Zerovalent Iron Particles for Environmental Restoration: From Fundamental Science to Field Scale Engineering Applications. Cham: Springer International Publishing; 2019:1-43. DOI: 10.1007/978-3-319-95340-3_1.10.1007/978-3-319-95340-3_1Search in Google Scholar

[9] Chen X, Ji D, Wang X, Zang L. Review on nano zerovalent iron (nZVI): From modification to environmental applications. IOP Conf Series: Earth and Environ Sci. 2017;51:012004. DOI: 10.1088/1742-6596/51/1/012004.10.1088/1742-6596/51/1/012004Search in Google Scholar

[10] Macé C, Desrocher S, Gheorghiu F, Kane A, Pupeza M, Cernik M, et al. Nanotechnology and groundwater remediation: A step forward in technology understanding. Remediation. 2006;16(2):23-33. DOI: 10.1002/rem.20079.10.1002/rem.20079Search in Google Scholar

[11] Tobiszewski M, Namieśnik J. Abiotic degradation of chlorinated ethanes and ethenes in water. Environ Sci Pollut Res Int. 2012;19(6):1994-2006. DOI: 10.1007/s11356-012-0764-9.10.1007/s11356-012-0764-9339069922293908Search in Google Scholar

[12] Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol. 2005;39(5):1338-45. DOI: 10.1021/es049195r.10.1021/es049195r15787375Search in Google Scholar

[13] Hunkeler D, Abe Y, Broholm MM, Jeannottat S, Westergaard C, Jacobsen CS, et al. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR. J Contam Hydrol. 2011;119(1-4):69-79. DOI: 10.1016/j.jconhyd.2010.09.009.10.1016/j.jconhyd.2010.09.00921030108Search in Google Scholar

[14] Lee W, Batchelor B. Abiotic reductive dechlorination of chlorinated ethylenes by soil. Chemosphere. 2004;55(5):705-13. DOI: 10.1016/j.chemosphere.2003.11.033.10.1016/j.chemosphere.2003.11.03315013675Search in Google Scholar

[15] Fraraccio S, Strejcek M, Dolinova I, Macek T, Uhlik O. Secondary compound hypothesis revisited: Selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE). Sci Rep. 2017;7(1):8406. DOI: 10.1038/s41598-017-07760-1.10.1038/s41598-017-07760-1555944428814712Search in Google Scholar

[16] Waclawek S, Nosek J, Cádrová L, Antos V, Cerník M. Use of various zero valent irons for degradation of chlorinated ethenes and ethanes. Ecol Chem Eng S. 2015;22(4):577-87. DOI: 10.1038/s41598-017-07760-1.10.1038/s41598-017-07760-1Search in Google Scholar

[17] Qian L, Chen Y, Ouyang D, Zhang W, Han L, Yan J, et al. Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron. Sci Total Environ. 2020;698:134215. DOI: 10.1016/j.scitotenv.2019.134215.10.1016/j.scitotenv.2019.13421531494413Search in Google Scholar

[18] Zhou X, Chen H, Gao S-H, Han S, Tu R, Wei W, et al. Effects of particle size of zero-valent iron (ZVI) on peroxydisulfate-ZVI enhanced sludge dewaterability. Korean J Chem Eng. 2017;34(10):2672-7. DOI: 10.1007/s11814-017-0187-x.10.1007/s11814-017-0187-xSearch in Google Scholar

[19] Crane RA, Scott TB. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J Hazard Mater. 2012;211-212:112-25. DOI: 10.1016/j.jhazmat.2011.11.073.10.1016/j.jhazmat.2011.11.07322305041Search in Google Scholar

[20] Comba S, Di Molfetta A, Sethi R. A Comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut. 2011;215:595-607. DOI: 10.1007/s11270-010-0502-1.10.1007/s11270-010-0502-1Search in Google Scholar

[21] Henderson AD, Demond AH. Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environ Eng Sci. 2007;24(4):401-23. DOI: 10.1089/ees.2006.0071.10.1089/ees.2006.0071Search in Google Scholar

[22] Han Y, Yan W. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: Reactivity enhancement through sulfidation treatment. Environ Sci Technol. 2016;50(23):12992-3001. DOI: 10.1021/acs.est.6b03997.10.1021/acs.est.6b0399727934264Search in Google Scholar

[23] Mukherjee R, Kumar R, Sinha A, Lama Y, Saha AK. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Crit Rev Environ Sci Technol. 2016;46(5):443-66. DOI: 10.1080/10643389.2015.1103832.10.1080/10643389.2015.1103832Search in Google Scholar

[24] Noubactep C, Caré S, Crane R. Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut. 2012;223(3):1363-82. DOI: 10.1007/s11270-011-0951-1.10.1007/s11270-011-0951-1Search in Google Scholar

[25] Przepiora A, Roberts J. Zero-valent iron for groundwater remediation - Lessons learned over 20 years of technology use. 2016:28. Available from: https://www.esaa.org/wp-content/uploads/2016/10/16-Przepiora2.pdf.Search in Google Scholar

[26] Gu C, Jia H, Li H, Teppen BJ, Boyd SA. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates. Environ Sci Technol. 2010;44(11):4258-63. DOI: 10.1021/es903801r.10.1021/es903801rSearch in Google Scholar

[27] Duan R, Dong Y, Zhang Q. Characteristics of aggregate size distribution of nanoscale zero-valent iron in aqueous suspensions and its effect on transport process in porous media. Water. 2018;10:670. DOI: 10.3390/w10060670.10.3390/w10060670Search in Google Scholar

[28] Dolinová I, Czinnerová M, Dvořák L, Stejskal V, Ševců A, Černík M. Dynamics of organohalide-respiring bacteria and their genes following in-situ chemical oxidation of chlorinated ethenes and biostimulation. Chemosphere. 2016;157:276-85. DOI: 10.1016/j.chemosphere.2016.05.030.10.1016/j.chemosphere.2016.05.030Search in Google Scholar

[29] Shi Z, Nurmi JT, Tratnyek PG. Effects of nano zero-valent iron on oxidation-reduction potential. Environ Sci Technol. 2011;45(4):1586-92. DOI: 10.1021/es103185t.10.1021/es103185tSearch in Google Scholar

[30] Černík M, Nosek J, Filip J, Hrabal J, Elliott DW, Zbořil R. Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept. Water Res. 2019;154:361-9. DOI: 10.1016/j.watres.2019.01.058.10.1016/j.watres.2019.01.058Search in Google Scholar

[31] Wang SY, Kuo YC, Huang YZ, Huang CW, Kao CM. Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies. Environ Pollut. 2015;203:97-106. DOI: 10.1016/j.envpol.2015.03.042.10.1016/j.envpol.2015.03.042Search in Google Scholar

[32] Villemur R, Lanthier M, Beaudet R, Lépine F. The Desulfitobacterium genus. FEMS Microbiol Rev. 2006;30(5):706-33. DOI: 10.1111/j.1574-6976.2006.00029.x.10.1111/j.1574-6976.2006.00029.xSearch in Google Scholar

[33] Lee T, Tokunaga T, Suyama A, Furukawa K. Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic desdfitobacterium sp. strain Y-5 1 and zero-valent iron. J Biosci Bioeng. 2001;92(5):453-8. DOI: 10.1016/S1389-1723(01)80295-4.10.1016/S1389-1723(01)80295-4Search in Google Scholar

[34] Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E. Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chemosphere. 2016;144:352-9. DOI: 10.1016/j.chemosphere.2015.09.025.10.1016/j.chemosphere.2015.09.02526378872Search in Google Scholar

[35] Zabetakis KM, Niño de Guzmán GT, Torrents A, Yarwood S. Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(8):794-805. DOI: 10.1080/10934529.2015.1019796.10.1080/10934529.2015.101979626030685Search in Google Scholar

[36] Vogel T, Criddle C, McCarty P. Transformation of halogenated aliphatic compounds. Environ Sci Technol. 1987;21:722-36. DOI: 10.1021/es00162a001.10.1021/es00162a00119995052Search in Google Scholar

[37] Maymó-Gatell X, Nijenhuis I, Zinder SH. Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by ‘Dehalococcoides ethenogenes’. Environ Sci Technol. 2001;35(3):516-21. DOI: 10.1021/es001285i.10.1021/es001285i11351722Search in Google Scholar

[38] Zhang W. Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res. 2003;5(3):323-32. DOI: 10.1023/A:1025520116015.10.1023/A:1025520116015Search in Google Scholar

[39] Bianco C, Patiño Higuita JE, Tosco T, Tiraferri A, Sethi R. Controlled deposition of particles in porous media for effective aquifer nanoremediation. Sci Rep. 2017;7. DOI: 10.1038/s41598-017-13423-y.10.1038/s41598-017-13423-y563682529021630Search in Google Scholar

[40] Chang Q. Chapter 3 - Sedimentation. In: Chang Q, editor. Colloid and Interface Chemistry for Water Quality Control. Academic Press. 2016:23-35. DOI: 10.1016/B978-0-12-809315-3.00003-7.10.1016/B978-0-12-809315-3.00003-7Search in Google Scholar

eISSN:
1898-6196
Language:
English