Open Access

The genus Portulaca as a suitable model to study the mechanisms of plant tolerance to drought and salinity


Cite

IPCC (WGI). Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, JT Houghton and Ding Yihu, eds. Cambridge: Cambridge University Press, 2001.IPCC (WGI)Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate ChangeHoughtonJTYihuDingCambridgeCambridge University Press2001Search in Google Scholar

IPCC (WGII). Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. JJ McCarthy, OF Canziani, NA Leary, DJ Dokken, and KS White, eds. Cambridge: Cambridge University Press, 2001b.IPCC (WGII)Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate ChangeMcCarthyJJCanzianiOFLearyNADokkenDJWhiteKSCambridgeCambridge University Press2001bSearch in Google Scholar

Warrick RA. The possible impacts on wheat product on of a recurrence of the 1930s drought in the U.S. Great Plans. Climatic Change 1984; 6: 5-26.10.1007/BF00141665WarrickRAThe possible impacts on wheat product on of a recurrence of the 1930s drought in the U.S. Great PlansClimatic Change19846526Open DOISearch in Google Scholar

Boyer JS: Plant productivity and environment. Science 1982; 218(4571): 443-448.1780852910.1126/science.218.4571.443BoyerJSPlant productivity and environmentScience19822184571443448Search in Google Scholar

Bray EA, Bailey-Serres J, Weretilnyk E. Responses to abiotic stress. In: Buchanan B, Gruissem W, Jones R eds. Biochemistry and molecular biology of plants. American Society of Plant Physiology 2000; Rockville, pp 1158-1203.BrayEABailey-SerresJWeretilnykEResponses to abiotic stressBuchananBGruissemWJonesRBiochemistry and molecular biology of plants. American Society of Plant Physiology2000Rockville11581203Search in Google Scholar

FAO. FAO land and plant nutrition management service 2008. Available at http://www.fao.org/ag/agl/agll/spushFAOFAO land and plant nutrition management service2008Available athttp://www.fao.org/ag/agl/agll/spushSearch in Google Scholar

Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003; 218(1): 1-14.10.1007/s00425-003-1105-514513379WangWVinocurBAltmanAPlant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerancePlanta20032181114Open DOISearch in Google Scholar

Flowers TJ, Hajibagheri MA, Clipson NJW. Halophytes. Quat Rev Biol 1986; 61: 313-337. doi: 10.1086/41503210.1086/415032FlowersTJHajibagheriMAClipsonNJWHalophytesQuat Rev Biol19866131333710.1086/415032Open DOISearch in Google Scholar

Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsis Plant Physiol 2000; 124: 941-948.10.1104/pp.124.3.94111080272ZhuJKGenetic analysis of plant salt tolerance using ArabidopsisPlant Physiol2000124941948Open DOISearch in Google Scholar

Reddy IN, Kim BK, Yoon IS, Kim KH, Kwon TR. Salt tolerance in rice: Focus on mechanisms and approaches. Rice Sci 2017; 24(3): 123-144.10.1016/j.rsci.2016.09.004ReddyINKimBKYoonISKimKHKwonTRSalt tolerance in rice: Focus on mechanisms and approachesRice Sci2017243123144Open DOISearch in Google Scholar

Zhang J, Zhang Y, Du Y, Chen S, Tang H. Dynamic metabonomic responses of tobacco Nicotiana tabacum plants to salt stress. J Proteome Res 2011; 10(4): 1904-1914.10.1021/pr101140n21323351ZhangJZhangYDuYChenSTangHDynamic metabonomic responses of tobacco Nicotiana tabacum plants to salt stressJ Proteome Res201110419041914Open DOISearch in Google Scholar

Cruz V, Cuartero J. Effects of salinity at several developmental stages of six genotypes of tomato Lycopersicon spp.). In: Proceedings of the XIth Eucarpia meeting on tomato genetics and breeding 1990: 81-86.CruzVCuarteroJEffects of salinity at several developmental stages of six genotypes of tomato Lycopersicon spp.)In: Proceedings of the XIth Eucarpia meeting on tomato genetics and breeding19908186Search in Google Scholar

Xiong L, Zhu JK. Salt-stress signal transduction. In: Scheel D, Wasternack C, eds. Plant Signal Transduction, Frontiers in Molecular Biology Series 2002. Oxford UK: Oxford University Press, pp 165-197.XiongLZhuJKSalt-stress signal transductionScheelDWasternackCPlant Signal Transduction, Frontiers in Molecular Biology Series2002Oxford UKOxford University Press165197Search in Google Scholar

Zhu JK. Plant salt tolerance. Trends Plant Sci 2001; 6: 66-71.10.1016/S1360-1385(00)01838-011173290ZhuJKPlant salt toleranceTrends Plant Sci200166671Open DOISearch in Google Scholar

Barnes RF, Baylor JE. Forages in a changing world. In: Forages, Vol 1: An introduction to Grassland Agriculture, Barnes RF, Miller DA, Nelson CJ, eds. 5th ed. Iowa State University Press, Iowa 1995.BarnesRFBaylorJEForages in a changing worldForages, Vol 1: An introduction to Grassland AgricultureBarnesRFMillerDANelsonCJ5th edIowa State University PressIowa1995Search in Google Scholar

Rozema J, Flowers T. Crops for a salinized world. Science 2008; 322: 1478-1480.10.1126/science.116857219056965RozemaJFlowersTCrops for a salinized worldScience20083221478148019056965Open DOISearch in Google Scholar

Lokhande VH, Suprasanna P. Prospects of halophytes in understanding and managing abiotic stress tolerance in environmental adaptations and stress tolerance of plants in the era of climate change, Ahmad P, Prasad MNV, eds., pp. 29-56, Springer, New York, NY, USA, 2012.LokhandeVHSuprasannaPProspects of halophytes in understanding and managing abiotic stress tolerance in environmental adaptations and stress tolerance of plants in the era of climate changeAhmadPPrasadMNVeds., pp2956SpringerNew York, NY, USA201210.1007/978-1-4614-0815-4_2Search in Google Scholar

Ma J, Zhang M, Xiao X, You J, Wang J, Wang T, ... Tian C. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment. PloS ONE 20013; 8(6): e65877.MaJZhangMXiaoXYouJWangJWangTTianCGlobal transcriptome profiling of Salicornia europaea L. shoots under NaCl treatmentPloS ONE 2001386e6587710.1371/journal.pone.0065877369249123825526Search in Google Scholar

Ramani B, Reeck T, Debez A, Stelzer R, Huchzermeyer B, Schmidt A, Papenbrock J. Aster tripolium L. and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitats. Plant Physiol Biochem 2006; 44(5): 395-408.16806957RamaniBReeckTDebezAStelzerRHuchzermeyerBSchmidtAPapenbrockJ.Aster tripolium L. and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitatsPlant Physiol Biochem200644539540810.1016/j.plaphy.2006.06.00716806957Search in Google Scholar

Zurayk RA, Baalbaki R. Inula crithmoides a candidate plant for saline agriculture. Arid Land Res Manag 1996; 10(3): 213-223.ZuraykRABaalbakiR.Inula crithmoides a candidate plant for saline agricultureArid Land Res Manag1996103213223Search in Google Scholar

Al Hassan M, Chaura J, López-Gresa MP, Borsai O, Daniso E, Donat-Torres MP, ... Boscaiu M. Native-invasive plants vs. halophytes in Mediterranean salt marshes: Stress tolerance mechanisms in two related species. Front Plant Sci 2016; 7: 473.27148301Al HassanMChauraJLópez-GresaMPBorsaiODanisoEDonat-TorresMPBoscaiuMNative-invasive plants vs. halophytes in Mediterranean salt marshes: Stress tolerance mechanisms in two related speciesFront Plant Sci2016747310.3389/fpls.2016.00473483435127148301Search in Google Scholar

Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J and Vicente O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front Plant Sci 2015; 6: 978.26617620FitaARodríguez-BurruezoABoscaiuMProhensJVicenteOBreeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food productionFront Plant Sci2015697810.3389/fpls.2015.00978464190626617620Search in Google Scholar

Glenn EP, Anday T, Chaturvedi R, Martinez-Garcia R, Pearlstein S, Soliz D, ... Felger RS. Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop. Environ Exp Bot 2013; 92: 110-121.10.1016/j.envexpbot.2012.05.002GlennEPAndayTChaturvediRMartinez-GarciaRPearlsteinSSolizDFelgerRSThree halophytes for saline-water agriculture: An oilseed, a forage and a grain cropEnviron Exp Bot201392110121Open DOISearch in Google Scholar

Glenn EP, O’leary JW, Watson MC, Thompson TL, Kuehl RO. Salicornia bigelovii Torr: An oilseed halophyte for seawater irrigation. Science 1991; 251: 1065-1067. doi:10.1126/science.251.4997.106510.1126/science.251.4997.1065GlennEPO’learyJWWatsonMCThompsonTLKuehlRO.Salicornia bigelovii Torr: An oilseed halophyte for seawater irrigationScience19912511065106710.1126/science.251.4997.106517802093Open DOISearch in Google Scholar

Weber DJ, Ansarib R, Gul B, Khan MA. Potential of halophytes as source of edible oil. J Arid Environ 2007; 68: 315-321. doi: 10.1016/j.jaridenv.2006.05.01010.1016/j.jaridenv.2006.05.010WeberDJAnsaribRGulBKhanMAPotential of halophytes as source of edible oilJ Arid Environ20076831532110.1016/j.jaridenv.2006.05.010Open DOISearch in Google Scholar

Ma C, Zhou D, Wang H, Han D, Wang Y, Yan X. Elicitation of Jerusalem artichoke Helianthus tuberosus L.) cell suspension culture for enhancement of inulin production and altered degree of polymerisation. J Sci Food Agric 2017; 97(1): 88-94.10.1002/jsfa.7686MaCZhouDWangHHanDWangYYanXElicitation of Jerusalem artichoke Helianthus tuberosus L.) cell suspension culture for enhancement of inulin production and altered degree of polymerisationJ Sci Food Agric2017971889426917428Open DOISearch in Google Scholar

Khan MA, Qaiser M. Halophytes of Pakistan: characteristics, distribution and potential economic usages. Sabkha ecosystems 2006: 129-53.KhanMAQaiserMHalophytes of Pakistan: characteristics, distribution and potential economic usagesSabkha ecosystems20061295310.1007/978-1-4020-5072-5_11Search in Google Scholar

Jin R, Wang Y, Liu R, Gou J, Chan Z. Physiological and metabolic changes of purslane Portulaca oleracea L.) in response to drought, heat, and combined stresses. Front Plant Sci 2016; 6: 1123.26779204JinRWangYLiuRGouJChanZPhysiological and metabolic changes of purslane Portulaca oleracea L.) in response to drought, heat, and combined stressesFront Plant Sci20166112310.3389/fpls.2015.01123470382626779204Search in Google Scholar

von Poellnitz K. Versuch eine Monographie der Gattung Portulaca L. Fedde Rep 1934; 37: 240-320.10.1002/fedr.19340371403von PoellnitzKVersuch eine Monographie der Gattung Portulaca LFedde Rep193437240320Open DOISearch in Google Scholar

Legrand D. Las especies americanas de Portulaca. Mus Hist Nat 1962; 2a Ser. 7, 1-147.LegrandDLas especies americanas de PortulacaMus Hist Nat19622a Ser71147Search in Google Scholar

Geesink R. An account of the genus Portulaca in Indo-Australia and the Pacific. Blumea 1969; 17: 275-301.GeesinkRAn account of the genus Portulaca in Indo-Australia and the PacificBlumea196917275301Search in Google Scholar

Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007; 7: 214. doi:10.1186/1471-2148-7-214.10.1186/1471-2148-7-21417996036DrummondAJRambautABEAST: Bayesian evolutionary analysis by sampling treesBMC Evol Biol2007721410.1186/1471-2148-7-214224747617996036Open DOISearch in Google Scholar

Ocampo G, Columbus JT. Molecular phylogenetics, historical biogeography, and chromosome number evolution of Portulaca (Portulacaceae). Mol Phylogenetics Evol 2016; 63(1): 97-112.OcampoGColumbusJTMolecular phylogenetics, historical biogeography, and chromosome number evolution of Portulaca (Portulacaceae)Mol Phylogenetics Evol20166319711210.1016/j.ympev.2011.12.01722210411Search in Google Scholar

Teixeira M, Carvalho IS. Effects of salt stress on purslane Portulaca oleracea nutrition. Ann App Bio 2009; 154(1): 77-86.10.1111/j.1744-7348.2008.00272.xTeixeiraMCarvalhoISEffects of salt stress on purslane Portulaca oleracea nutritionAnn App Bio200915417786Open DOISearch in Google Scholar

Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A, Aslani F. Screening of purslane Portulaca oleracea L.) accessions for high salt tolerance. Sci World J 2014; 9.AlamMAJuraimiASRafiiMYAbdul HamidAAslaniFScreening of purslane Portulaca oleracea L.) accessions for high salt toleranceSci World J2014910.1155/2014/627916406804325003141Search in Google Scholar

Grieve CM, Suarez DL. Purslane Portulaca oleracea L.): a halophytic crop for drainage water reuse systems. Plant and Soil 1997; 192(2): 277-283.10.1023/A:1004276804529GrieveCMSuarezDLPurslane Portulaca oleracea L.): a halophytic crop for drainage water reuse systemsPlant and Soil19971922277283Open DOISearch in Google Scholar

Ren S, Weeda S, Akande O, Guo Y, Rutto L, Mebrahtu T. Drought tolerance and AFLP-based genetic diversity in purslane Portulaca oleracea L.). J Biotech Res 2011; 3: 51-61.RenSWeedaSAkandeOGuoYRuttoLMebrahtuTDrought tolerance and AFLP-based genetic diversity in purslane Portulaca oleracea L.)J Biotech Res201135161Search in Google Scholar

Liu L, Howe P, Zhou YF, Hocart C, Zhang R. Fatty acid profiles of leaves of nine edible wild plants: an Australian study. J Food Lipids 2002; 9: 65-71.10.1111/j.1745-4522.2002.tb00209.xLiuLHowePZhouYFHocartCZhangRFatty acid profiles of leaves of nine edible wild plants: an Australian studyJ Food Lipids200296571Open DOISearch in Google Scholar

Zheng ZH, Dong ZH, Yu J. Modern study of traditional Chinese medicine, Xue Yuan Press, Beijing University of Traditional Chinese Medicine, Beijing, 1997.ZhengZHDongZHYuJModern study of traditional Chinese medicineXue Yuan Press, Beijing University of Traditional Chinese MedicineBeijing1997Search in Google Scholar

Simpoulos AP. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 1991; 54: 438-463.190863110.1093/ajcn/54.3.438SimpoulosAPOmega-3 fatty acids in health and disease and in growth and developmentAm J Clin Nutr1991544384631908631Search in Google Scholar

Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Alam MZ. Effects of salinity and salinity-induced augmented bioactive compounds in purslane Portulaca oleracea L.) for possible economical use. Food Chem 2015; 169: 439-447.2523624910.1016/j.foodchem.2014.08.019AlamMAJuraimiASRafiiMYHamidAAAslaniFAlamMZEffects of salinity and salinity-induced augmented bioactive compounds in purslane Portulaca oleracea L.) for possible economical useFood Chem201516943944725236249Search in Google Scholar

Mulry KR, Hanson BA, Dudle DA. Alternative strategies in response to saline stress in two varieties of Portulaca oleracea (purslane). PloS ONE 2015; 10(9): e0138723.10.1371/journal.pone.013872326398279MulryKRHansonBADudleDAAlternative strategies in response to saline stress in two varieties of Portulaca oleracea (purslane)PloS ONE2015109e0138723458060226398279Open DOISearch in Google Scholar

Crane TA, Roncoli C, Hoogenboom G. Adaptation to climate change and climate variability: the importance of understanding agriculture as performance. NJAS –Wag. J Life Sci 2011; 57: 179-185. doi: 10.1016/j.njas.2010.11.00210.1016/j.njas.2010.11.002CraneTARoncoliCHoogenboomGAdaptation to climate change and climate variability: the importance of understanding agriculture as performanceNJAS –Wag. J Life Sci20115717918510.1016/j.njas.2010.11.002Open DOISearch in Google Scholar

Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 2010; 48(12): 909-930.10.1016/j.plaphy.2010.08.01620870416GillSSTutejaNReactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plantsPlant Physiol Biochem2010481290993020870416Open DOISearch in Google Scholar

Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003; 218(1): 1-14.10.1007/s00425-003-1105-514513379WangWVinocurBAltmanAPlant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerancePlanta2003218111414513379Open DOISearch in Google Scholar

Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S … Kopka J. Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev 2015; 91: 1118-1133. doi: 10.1111/brv.12215HilkerMSchwachtjeJBaierMBalazadehSBäurleIGeiselhardtSKopkaJPriming and memory of stress responses in organisms lacking a nervous systemBiol Rev2015911118113310.1111/brv.1221526289992Open DOISearch in Google Scholar

Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Bellés JM, Soriano P. Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 2004; 58: 463-481.10.1016/j.jaridenv.2003.12.003VicenteOBoscaiuMNaranjoMAEstrellesEBellésJMSorianoPResponses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae)J Arid Environ200458463481Open DOISearch in Google Scholar

Rahdari P, Tavakoli S, Hosseini SM. Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane Portulaca oleracea L.) leaves. J Stress Physiol Biochem 2012; 8(1): 182-193.RahdariPTavakoliSHosseiniSMStudying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane Portulaca oleracea L.) leavesJ Stress Physiol Biochem201281182193Search in Google Scholar

Borsai O, Al Hassan M, Boscaiu M, Vicente O, Sestras A, Sestras R. Effects of salt on seed germination and seedling growth of three Portulaca species. Bulletin USAMV Cluj-Napoca. Horticulture 2015; 72(2): 450-451.BorsaiOAl HassanMBoscaiuMVicenteOSestrasASestrasREffects of salt on seed germination and seedling growth of three Portulaca speciesBulletin USAMV Cluj-Napoca. Horticulture201572245045110.15835/buasvmcn-hort:11545Search in Google Scholar

Franco JA, Cros V, Vicente MJ, Martínez-Sánchez JJ. Effects of salinity on the germination, growth, and nitrate contents of purslane Portulaca oleracea L.) cultivated under different climatic conditions. J Hortic Sci Biotechnol 2011; 86(1): 1-6.10.1080/14620316.2011.11512716FrancoJACrosVVicenteMJMartínez-SánchezJJEffects of salinity on the germination, growth, and nitrate contents of purslane Portulaca oleracea L.) cultivated under different climatic conditionsJ Hortic Sci Biotechnol201186116Open DOISearch in Google Scholar

Rahimi Z, Kafi M. Effects of drought stress on germination characteristics of purslane Portulaca oleracea L.). Environ Stress Crop Sci 2009; 2(1): 87-91.RahimiZKafiMEffects of drought stress on germination characteristics of purslane Portulaca oleracea L.)Environ Stress Crop Sci2009218791Search in Google Scholar

Pill WG, Frett JJ, Morneau DC. Germination and seedling emergence of primed tomato and asparagus seeds under adverse conditions. Hort Sci 1991; 26(9): 1160-1162.10.21273/HORTSCI.26.9.1160PillWGFrettJJMorneauDCGermination and seedling emergence of primed tomato and asparagus seeds under adverse conditionsHort Sci199126911601162Open DOISearch in Google Scholar

Miceli A, Moncada A, D’Anna F. Effect of water salinity on seeds germination of Ocimum basilicum L., Eruca sativa L. and Petroselinum hortense Hoffm. Acta Hort 2003; 609: 365-370.MiceliAMoncadaAD’AnnaFEffect of water salinity on seeds germination of Ocimum basilicum L., Eruca sativa L. and Petroselinum hortense HoffmActa Hort200360936537010.17660/ActaHortic.2003.609.55Search in Google Scholar

Zapryanova N, Atanassova B. Effects of salt stress on growth and flowering of ornamental annual species. Biotechnol Biotechnol Equip 2009; 23(sup1): 177-179.10.1080/13102818.2009.10818394ZapryanovaNAtanassovaBEffects of salt stress on growth and flowering of ornamental annual speciesBiotechnol Biotechnol Equip200923sup1177179Open DOISearch in Google Scholar

Cicevan R, Al Hassan M, Sestras AF, Prohens J, Vicente O, Sestras RE, Boscaiu M. Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae). Peer J 2016; 4: e2133.10.7717/peerj.2133CicevanRAl HassanMSestrasAFProhensJVicenteOSestrasREBoscaiuMScreening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae)Peer J20164e2133491194627326384Open DOISearch in Google Scholar

Jaleel PM, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Vam RP. Drought stress in plants: a review on morphological characteristics and pigments composition Int J Agric Biol 2009; 11: 100-105.JaleelPMWahidAFarooqMAl-JuburiHJSomasundaramRVamRPDrought stress in plants: a review on morphological characteristics and pigments composition Int J Agric Biol200911100105Search in Google Scholar

Kaya MD, Okçu G, Atak M, Çıkılı Y, Kolsarıcı Ö. Seed treatments to overcome salt and drought stress during germination in sunflower Helianthus annuus L.). Eur J Agron 2006; 24(4): 291-295.10.1016/j.eja.2005.08.001KayaMDOkçuGAtakMÇıkılıYKolsarıcıÖSeed treatments to overcome salt and drought stress during germination in sunflower Helianthus annuus L.)Eur J Agron2006244291295Open DOISearch in Google Scholar

Giménez Luque E, Delgado Fernández IC, Gómez Mercado F. Effect of salinity and temperature on seed germination in Limonium cossonianum Botany 2012; 91(1): 12-16.Giménez LuqueEDelgado FernándezICGómez MercadoFEffect of salinity and temperature on seed germination in Limonium cossonianumBotany2012911121610.1139/cjb-2012-0157Search in Google Scholar

Al Hassan M, Estrelles E, Soriano P, López-Gresa MP, Bellés JM, Boscaiu M, Vicente O. Unraveling salt tolerance mechanisms in halophytes: a comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Front Plant Sci 2017; 8:1438. doi: 10.3389/fpls.2017.014382886110610.3389/fpls.2017.01438Al HassanMEstrellesESorianoPLópez-GresaMPBellésJMBoscaiuMVicenteOUnraveling salt tolerance mechanisms in halophytes: a comparative study on four Mediterranean Limonium species with different geographic distribution patternsFront Plant Sci20178143810.3389/fpls.2017.01438556269128861106Search in Google Scholar

Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012. doi: 10.1155/2012/217037SharmaPJhaABDubeyRSPessarakliMReactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditionsJ Bot201210.1155/2012/217037Open DOISearch in Google Scholar

Serrano R, Mulet JM, Rios G, Marquez JA, Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C. A glimpse of the mechanisms of ion homeostasis during salt stress. J Exper Bot 1999; 50: 1023-1036.10.1093/jxb/50.Special_Issue.1023SerranoRMuletJMRiosGMarquezJALarrinoaIFLeubeMPMendizabalIPascual-AhuirAProftMRosRMontesinosCA glimpse of the mechanisms of ion homeostasis during salt stressJ Exper Bot19995010231036Open DOISearch in Google Scholar

Yan K, Shao H, Shao C, Chen P, Zhao S, Brestic M, Chen X. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant 2013; 35(10): 2867-2878.10.1007/s11738-013-1325-7YanKShaoHShaoCChenPZhaoSBresticMChenXPhysiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zoneActa Physiol Plant2013351028672878Open DOISearch in Google Scholar

Nakabayashi R, Mori T, Saito K. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana Plant Signal Behav 2014; pii: e29518.NakabayashiRMoriTSaitoKAlternation of flavonoid accumulation under drought stress in Arabidopsis thalianaPlant Signal Behav2014pii10.4161/psb.29518420363525763629Search in Google Scholar

Alam MA, Juraimi, AS, Rafii MY, Hamid AA, Aslani F, Hakim MA. Salinity induced changes in the morphology and major mineral nutrient composition of purslane Portulaca oleracea L.) accessions. Biol Res 2016; 49: 24. doi: 10.1186/s40659-016-0084-52709064310.1186/s40659-016-0084-5AlamMAJuraimiASRafiiMYHamidAAAslaniFHakimMASalinity induced changes in the morphology and major mineral nutrient composition of purslane Portulaca oleracea L.) accessionsBiol Res2016492410.1186/s40659-016-0084-5483615127090643Search in Google Scholar

van Zandt PA, Mopper S. Delayed and carry over effects of salinity on flowering in Iris hexagona (Iridaceae). Am J Bot 2002; 89(11): 1847-1851.10.3732/ajb.89.11.1847van ZandtPAMopperSDelayed and carry over effects of salinity on flowering in Iris hexagona (Iridaceae)Am J Bot200289111847185121665613Open DOISearch in Google Scholar

Boyd RS, Barbour MG. Relative salt tolerance of Cakile edentula (Brassicaceae) from lacustrine and marine beaches. Am J Bot 1986; 73(2): 236-241.10.1002/j.1537-2197.1986.tb08525.xBoydRSBarbourMGRelative salt tolerance of Cakile edentula (Brassicaceae) from lacustrine and marine beachesAm J Bot1986732236241Open DOISearch in Google Scholar

Blits KC, Gallagher JL. Morphological and physiological responses to increased salinity in marsh and dune ecotypes of Sporobolus virginicus (L.). Kunth Oecologia 1991; 87(3): 330-335.10.1007/BF00634587BlitsKCGallagherJLMorphological and physiological responses to increased salinity in marsh and dune ecotypes of Sporobolus virginicus (L.)Kunth Oecologia1991873330335Open DOISearch in Google Scholar

Ludlow MM, Ng TT. Water stress suspends leaf ageing. Plant Sci Lett 1974; 3: 235-240.10.1016/0304-4211(74)90093-5LudlowMMNgTTWater stress suspends leaf ageingPlant Sci Lett19743235240Open DOISearch in Google Scholar

Amirul Alam M, Shukor A, Rafii JMY, Hamid AA, Uddin MK, Alam MZ, Latif MA. Genetic improvement of purslane Portulaca oleracea L.) and its future prospects Mol Biol Rep 2014; 41: 7395-7411. doi 10.1007/s11033-014-3628-110.1007/s11033-014-3628-125085039Amirul AlamMShukorARafiiJMYHamidAAUddinMKAlamMZLatifMAGenetic improvement of purslane Portulaca oleracea L.) and its future prospectsMol Biol Rep2014417395741110.1007/s11033-014-3628-125085039Open DOISearch in Google Scholar

Schulze ED. Whole-plant responses to drought. Aust J Plant Physiol 1986; 13: 127-141.SchulzeEDWhole-plant responses to droughtAust J Plant Physiol19861312714110.1071/PP9860127Search in Google Scholar

Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 2009; 103(4): 551-560.1866293710.1093/aob/mcn125ChavesMMFlexasJPinheiroCPhotosynthesis under drought and salt stress: regulation mechanisms from whole plant to cellAnn Bot20091034551560270734518662937Search in Google Scholar

Qados AMA. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences 2011; 10(1): 7-15.10.1016/j.jssas.2010.06.002QadosAMAEffect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.)Journal of the Saudi Society of Agricultural Sciences2011101715Open DOISearch in Google Scholar

Misra AN, Latowski D and Strzalka K. The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress. Russ J Plant Physiol 2006; 53(1): 102-109.10.1134/S1021443706010134MisraANLatowskiDStrzalkaKThe xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stressRuss J Plant Physiol2006531102109Open DOISearch in Google Scholar

Murillo-Amador B, Yamada S, Yamaguchi T, Rueda-Puente E, Ávila-Serrano N, García-Hernández JL, Nieto-Garibay A. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J Agron Crop Sci 2007; 193(6): 413-421.10.1111/j.1439-037X.2007.00273.xMurillo-AmadorBYamadaSYamaguchiTRueda-PuenteEÁvila-SerranoNGarcía-HernándezJLNieto-GaribayAInfluence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stressJ Agron Crop Sci20071936413421Open DOISearch in Google Scholar

Gummuluru S, Jana S, Hobbs S. Genotypic variability in physiological characters and its relationship to drought tolerance in durum wheat. Can. J. Plant Sci 1989; 69(3): 703-711.10.4141/cjps89-086GummuluruSJanaSHobbsSGenotypic variability in physiological characters and its relationship to drought tolerance in durum wheatCan. J. Plant Sci1989693703711Open DOISearch in Google Scholar

Ayala-Astorga GI, Alcaraz-Meléndez L. Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortunei (Seemann & Hemsley) grown in vitro. Electron J Biotechnol 2010; 13(5): 13-14.Ayala-AstorgaGIAlcaraz-MeléndezLSalinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortunei (Seemann & Hemsley) grown in vitroElectron J Biotechnol2010135131410.2225/vol13-issue5-fulltext-13Search in Google Scholar

Beinsan C, Camen D, Sumalan R, Babau M. Study concerning salt stress effect on leaf area dynamics and chlorophyll content in four bean local landraces from Banat area. Fac Hortic 2003; 119: 416-419.BeinsanCCamenDSumalanRBabauMStudy concerning salt stress effect on leaf area dynamics and chlorophyll content in four bean local landraces from Banat areaFac Hortic2003119416419Search in Google Scholar

Siddiqi EH, Ashraf M, Hussain M, Jamil A. Assessment of intercultivar variation for salt tolerance in safflower Carthamus tinctorius L.) using gas exchange characteristics as selection criteria. Pak J Bot 2009; 41(5): 2251-2259.SiddiqiEHAshrafMHussainMJamilAAssessment of intercultivar variation for salt tolerance in safflower Carthamus tinctorius L.) using gas exchange characteristics as selection criteriaPak J Bot200941522512259Search in Google Scholar

Kafi M, Rahimi Z. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane Portulaca oleracea L.). J Soil Sci Plant Nutr 2011; 57(2): 341-347.10.1080/00380768.2011.567398KafiMRahimiZEffect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane Portulaca oleracea L.)J Soil Sci Plant Nutr2011572341347Open DOISearch in Google Scholar

Rodriguez P, Dell’Amico J, Morales D, Blanco MS, Alarcón JJ. Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants. J Agric Sci 1997; 128(4): 439-444.10.1017/S0021859697004309RodriguezPDell’AmicoJMoralesDBlancoMSAlarcónJJEffects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plantsJ Agric Sci19971284439444Open DOISearch in Google Scholar

Gama PBS, Inanaga S, Tanaka K, Nakazawa R. Physiological response of common bean Phaseolus vulgaris L.) seedlings to salinity stress. Afr J Biotechnol 2007; 6(2): 79-88.GamaPBSInanagaSTanakaKNakazawaRPhysiological response of common bean Phaseolus vulgaris L.) seedlings to salinity stressAfr J Biotechnol2007627988Search in Google Scholar

Gama PBS, Tanaka K, Eneji AE, Eltayeb AE, Siddig KE. Salt-induced stress effects on biomass, photosynthetic rate, and reactive oxygen species-scavenging enzyme accumulation in common bean. J Plant Nut 2009; 32(5): 837-854.10.1080/01904160902787925GamaPBSTanakaKEnejiAEEltayebAESiddigKESalt-induced stress effects on biomass, photosynthetic rate, and reactive oxygen species-scavenging enzyme accumulation in common beanJ Plant Nut2009325837854Open DOISearch in Google Scholar

Munns R. Physiological processes limiting plant growth in saline salt: some dogmas and hypotheses. Plant Cell Environ 1993; 16: 15-24.10.1111/j.1365-3040.1993.tb00840.xMunnsRPhysiological processes limiting plant growth in saline salt: some dogmas and hypothesesPlant Cell Environ1993161524Open DOISearch in Google Scholar

Li Z, Wakao S, Fischer BB, Niyogi KK. Sensing and responding to excess light. Annu Rev Plant Biol 2009; 60: 239-260. doi: 10.1016/j.cub.2005.06.041.10.1146/annurev.arplant.58.032806.10384419575582LiZWakaoSFischerBBNiyogiKKSensing and responding to excess lightAnnu Rev Plant Biol20096023926010.1016/j.cub.2005.06.04119575582Open DOISearch in Google Scholar

Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 1980; 31(1): 149-190.10.1146/annurev.pp.31.060180.001053GreenwayHMunnsRMechanisms of salt tolerance in nonhalophytesAnnu Rev Plant Physiol1980311149190Open DOISearch in Google Scholar

Collander R. Selective absorption of cations by higher plants. Plant Physiol 1941; 16(4): 691-720.1665373410.1104/pp.16.4.691CollanderRSelective absorption of cations by higher plantsPlant Physiol194116469172043794816653734Search in Google Scholar

Karakaş S, Cullu MA, Dikilitaş M. Comparison of two halophyte species Salsola soda and Portulaca oleracea for salt removal potential under different soil salinity conditions. Turk J Agric For, 2017; 41(3): 183-190.10.3906/tar-1611-82KarakaşSCulluMADikilitaşMComparison of two halophyte species Salsola soda and Portulaca oleracea for salt removal potential under different soil salinity conditionsTurk J Agric For2017413183190Open DOISearch in Google Scholar

Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiol 1995; 109: 735-742.1222862810.1104/pp.109.3.735NiuXBressanRAHasegawaPMPardoJMIon homeostasis in NaCl stress environmentsPlant Physiol199510973574216137212228628Search in Google Scholar

Maathuis FJM, Amtmann A. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann Bot. 1999; 84: 123-133.10.1006/anbo.1999.0912MaathuisFJMAmtmannAK+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratiosAnn Bot199984123133Open DOISearch in Google Scholar

Gorham J, Hughes LL, Wyn Jones RG. Low-molecular-weight carbohydrates in some salt-stressed plants. Physiol Plant 1981; 53(1): 27-33.10.1111/j.1399-3054.1981.tb05040.xGorhamJHughesLLWyn JonesRGLow-molecular-weight carbohydrates in some salt-stressed plantsPhysiol Plant19815312733Open DOISearch in Google Scholar

Abel GH, MacKenzie AJ. Salt tolerance of soybean varieties Glycine max L. Merrill) during germination and later growth. Crop Sci 1964; 4(2): 157-161.AbelGHMacKenzieAJSalt tolerance of soybean varieties Glycine max LMerrill) during germination and later growth. Crop Sci19644215716110.2135/cropsci1964.0011183X000400020010xSearch in Google Scholar

Rains DW. Plant tissue and protoplast culture: applications to stress physiology and biochemistry. In: Jones HG, Flowers TJ, Jones MB, eds. Plants Under Stress: Biochemistry, Physiology and Ecology and Their Application to Plant Improvement 1989; Seminar Series 39: 181-196.RainsDWPlant tissue and protoplast culture: applications to stress physiology and biochemistryJonesHGFlowersTJJonesMBPlants Under Stress: Biochemistry, Physiology and Ecology and Their Application to Plant Improvement1989Seminar Series3918119610.1017/CBO9780511661587.011Search in Google Scholar

Ali G, Srivastava PS, Iqbal M. Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. Biol Plant 1999; 42: 89-95.10.1023/A:1002127711432AliGSrivastavaPSIqbalMProline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stressBiol Plant1999428995Open DOISearch in Google Scholar

Rhodes D, Verslues PE, Sharp RE. Role of amino acids in abiotic stress resistance. In: Singh BK, ed., Plant Amino Acids: Biochemistry and Biotechnology. Marcel Dekker, NY 1999; 319-356.RhodesDVersluesPESharpRERole of amino acids in abiotic stress resistanceSinghBKPlant Amino Acids: Biochemistry and BiotechnologyMarcel DekkerNY1999319356Search in Google Scholar

Ozturk L, Demir Y. In vivo and in vitro protective role of proline. Plant Growth Regul 2002; 38: 259-264.10.1023/A:1021579713832OzturkLDemirYIn vivo and in vitro protective role of prolinePlant Growth Regul200238259264Open DOISearch in Google Scholar

Hsu SY, Hsu YT, Kao CH. The effect of polyethylene glycol on proline accumulation in rice leaves. Biol Plant 2003; 46: 73-78.10.1023/A:1022362117395HsuSYHsuYTKaoCHThe effect of polyethylene glycol on proline accumulation in rice leavesBiol Plant2003467378Open DOISearch in Google Scholar

Kavi Kishore PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 2005; 88: 424-438.Kavi KishorePBSangamSAmruthaRNLaxmiPSNaiduKRRaoKRSSRaoSReddyKJTheriappanPSreenivasuluNRegulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress toleranceCurr Sci200588424438Search in Google Scholar

Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS. Over-expression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 1995; 108: 1387-1394.10.1104/pp.108.4.1387KishorPBKHongZMiaoGHHuCAAVermaDPSOver-expression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plantsPlant Physiol19951081387139415751612228549Open DOISearch in Google Scholar

Satoh R, Nakashima K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2002. ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis Plant Physiol 2002; 130: 709-719.1237663810.1104/pp.009993SatohRNakashimaKSekiMShinozakiKYamaguchi-ShinozakiK.2002ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in ArabidopsisPlant Physiol13070971916660012376638Search in Google Scholar

Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H. P-clorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 2003; 133: 1135-1147.10.1104/pp.103.02784714526108OonoYOouraCRahmanAAspuriaETHayashiKTanakaAUchimiyaHP-clorophenoxyisobutyric acid impairs auxin response in Arabidopsis rootPlant Physiol20031331135114728160914526108Open DOISearch in Google Scholar

Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Sci 2005; 45: 437-448.10.2135/cropsci2005.0437ChinnusamyVJagendorfAZhuJKUnderstanding and improving salt tolerance in plantsCrop Sci200545437448Open DOISearch in Google Scholar

Yazici I, Türkan I, Sekmen AH, Demiral T. Salinity tolerance of purslane Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 2007; 61(1): 49-57.10.1016/j.envexpbot.2007.02.010YaziciITürkanISekmenAHDemiralTSalinity tolerance of purslane Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulationEnviron Exp Bot20076114957Open DOISearch in Google Scholar

Lutts S, Majerus V, Kinet JM. NaCl effects on proline metabolism in rice Oryza sativa seedlings. Physiol Plant 1999; 105: 450-458.10.1034/j.1399-3054.1999.105309.xLuttsSMajerusVKinetJMNaCl effects on proline metabolism in rice Oryza sativa seedlingsPhysiol Plant1999105450458Open DOISearch in Google Scholar

Lacerda CFD, Cambraia J, Oliva MA, Ruiz HA. Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress. Braz J Plant Physiol 2003; 15(2): 113-118.10.1590/S1677-04202003000200007LacerdaCFDCambraiaJOlivaMARuizHAOsmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stressBraz J Plant Physiol2003152113118Open DOISearch in Google Scholar

Al Hassan M, Morosan M, López-Gresa MP, Prohens J, Vicente O, Boscaiu M. Salinity-induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common Phaseolus vulgaris and runner P. coccineus beans. Int J Mol Sci 2016; 17: 1582. doi:10.3390/ijms1709158210.3390/ijms17091582Al HassanMMorosanMLópez-GresaMPProhensJVicenteOBoscaiuMSalinity-induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common Phaseolus vulgaris and runner P. coccineus beansInt J Mol Sci2016171582doi10.3390/ijms17091582503784727657045Open DOISearch in Google Scholar

Venkatesan A, Chellappan KP. Accumulation of proline and glycine betaine in Ipomoea pes-caprae induced by NaCl. Biol Plant 1998; 41: 271-276. doi:10.1023/A:100183930262710.1023/A:1001839302627VenkatesanAChellappanKPAccumulation of proline and glycine betaine in Ipomoea pes-caprae induced by NaClBiol Plant19984127127610.1023/A:1001839302627Open DOISearch in Google Scholar

Mansour MMF. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 2000; 43: 491-500. doi: 10.1023/A:100287353170710.1023/A:1002873531707MansourMMFNitrogen containing compounds and adaptation of plants to salinity stressBiol Plant20004349150010.1023/A:1002873531707Open DOISearch in Google Scholar

Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK. Transgenics of an elite indica rice variety pusa basmati 1 harbouring the coda gene are highly tolerant to salt stress. Theor Appl Genet 2002; 106: 51-57. doi:10.1007/s00122-002-1063-510.1007/s00122-002-1063-512582870MohantyAKathuriaHFerjaniASakamotoAMohantyPMurataNTyagiAKTransgenics of an elite indica rice variety pusa basmati 1 harbouring the coda gene are highly tolerant to salt stressTheor Appl Genet2002106515710.1007/s00122-002-1063-512582870Open DOISearch in Google Scholar

Rhodes D, Hanson AD. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 1993; 44: 357-384.10.1146/annurev.pp.44.060193.002041RhodesDHansonADQuaternary ammonium and tertiary sulfonium compounds in higher plantsAnnu Rev Plant Physiol Plant Mol Biol199344357384Open DOISearch in Google Scholar

Papageorgiou GC, Murata N. The unusually strong stabilizing effects of glycinebetaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 1995; 44: 243-252.2430709410.1007/BF00048597PapageorgiouGCMurataNThe unusually strong stabilizing effects of glycinebetaine on the structure and function of the oxygen-evolving photosystem II complexPhotosynth Res19954424325224307094Search in Google Scholar

Shaw B, Thomas TH, Cooke DT. Responses of sugar beet Beta vulgaris L.) to drought and nutrient deficiency stress. Plant Growth Reg 2002; 37(1): 77-83.10.1023/A:1020381513976ShawBThomasTHCookeDTResponses of sugar beet Beta vulgaris L.) to drought and nutrient deficiency stressPlant Growth Reg20023717783Open DOISearch in Google Scholar

Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 2003; 158(3): 455-463.10.1046/j.1469-8137.2003.00770.xDi MartinoCDelfineSPizzutoRLoretoFFuggiAFree amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stressNew Phytol20031583455463Open DOISearch in Google Scholar

Ishitani M, Nakamura T, Han SY, Takabe T. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 1995; 27: 307-315.10.1007/BF000201857888620IshitaniMNakamuraTHanSYTakabeTExpression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acidPlant Mol Biol1995273073157888620Open DOISearch in Google Scholar

Weimberg R, Lerner HR, Poljakoffmayber A. Changes in growth and water soluble solute concentrations in Sorghum bicolor stressed with sodium and potassium salts. Physiol Plant 1984; 62: 472-480. doi:10.1111/j.1399-3054.1984.tb04605.x10.1111/j.1399-3054.1984.tb04605.xWeimbergRLernerHRPoljakoffmayberAChanges in growth and water soluble solute concentrations in Sorghum bicolor stressed with sodium and potassium saltsPhysiol Plant19846247248010.1111/j.1399-3054.1984.tb04605.xOpen DOISearch in Google Scholar

Nishimura N, Zhang J, Abo M, Okubo A, Yamazaki S. Application of capillary electrophoresis to the simultaneous determination of betaines in plants. Anal Sci 2001; 17(1): 103-106.1199364310.2116/analsci.17.103NishimuraNZhangJAboMOkuboAYamazakiSApplication of capillary electrophoresis to the simultaneous determination of betaines in plantsAnal Sci200117110310611993643Search in Google Scholar

Gil R, Boscaiu M, Lull C, Bautista I, Lidón A, Vicente O. Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Funct. Plant Biol 2013; 40: 805-818.GilRBoscaiuMLullCBautistaILidónAVicenteOAre soluble carbohydrates ecologically relevant for salt tolerance in halophytes? FunctPlant Biol201340805818Search in Google Scholar

Cram WJ. Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply. In: Luttge U, Pitman MG, eds. Encyclopaedia of Plant Physiology, New Series, Springer-Verlag, Berlin 1976; 2: 284-316.CramWJNegative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supplyLuttgeUPitmanMGEncyclopaedia of Plant PhysiologyNew Series, Springer-VerlagBerlin1976228431610.1007/978-3-642-66227-0_11Search in Google Scholar

Popp N, Smirnoff N. Polyol accumulation and metabolism during water deficit. In: Smirnoff N, ed., Environment and Plant Metabolism: Flexibility and Acclimation, Bios Scientific, Oxford 1995; 199-215.PoppNSmirnoffNPolyol accumulation and metabolism during water deficitSmirnoffNEnvironment and Plant Metabolism: Flexibility and AcclimationBios ScientificOxford1995199215Search in Google Scholar

Murakeozy EP, Nagy Z, Duhaze C, Bouchereau A, Tuba Z. Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 2003; 160: 395-401.10.1078/0176-1617-0079012756919MurakeozyEPNagyZDuhazeCBouchereauATubaZSeasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in HungaryJ Plant Physiol200316039540112756919Open DOISearch in Google Scholar

Ashraf M, Tufail M. Variation in salinity tolerance in sunflower Helianthus annuus L.), J Agron Soil Sci 1995; 174: 351-362.10.1111/j.1439-037X.1995.tb01122.xAshrafMTufailMVariation in salinity tolerance in sunflower Helianthus annuus L.)J Agron Soil Sci1995174351362Open DOISearch in Google Scholar

Ashraf M, Fatima H. Responses of some salt tolerant and salt sensitive lines of safflower Carthamus tinctorius L.). Acta Physiol Plant 1995; 17: 61-71.AshrafMFatimaHResponses of some salt tolerant and salt sensitive lines of safflower Carthamus tinctorius L.)Acta Physiol Plant1995176171Search in Google Scholar

Alscher, RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 2002; 53(372): 1331-1341.1199737910.1093/jexbot/53.372.1331AlscherRGErturkNHeathLSRole of superoxide dismutases (SODs) in controlling oxidative stress in plantsJ Exp Bot20025337213311341Search in Google Scholar

Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci 2006; 11: 15-19.10.1016/j.tplants.2005.11.00216359910MittlerRAbiotic stress, the field environment and stress combinationTrends Plant Sci200611151916359910Open DOISearch in Google Scholar

Xu S, Li J, Zhang X, Wei H, Cui L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 2006; 56: 274-285.10.1016/j.envexpbot.2005.03.002XuSLiJZhangXWeiHCuiLEffects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stressEnviron Exp Bot200656274285Open DOISearch in Google Scholar

Koca M, Bor M, Ozdemir F, Turkan I. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 2007; 60: 344-351.10.1016/j.envexpbot.2006.12.005KocaMBorMOzdemirFTurkanIThe effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivarsEnviron Exp Bot200760344351Open DOISearch in Google Scholar

Agarwal S, Shaheen R. Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia Braz J Plant Physiol 2007; 19(2): 149-161.10.1590/S1677-04202007000200007AgarwalSShaheenRStimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantiaBraz J Plant Physiol2007192149161Open DOISearch in Google Scholar

Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O. Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 2017; 9(2). doi:10.1093/aobpla/plx009.28439395Al HassanMChauraJDonat-TorresMPBoscaiuMVicenteOAntioxidant responses under salinity and drought in three closely related wild monocots with different ecological optimaAoB Plants20179210.1093/aobpla/plx009Search in Google Scholar

Gould KS, Lister C. Flavonoid function in plants. In: Andersen ØM, Marham KR, eds. Flavonoids, Chemistry, Biochemistry and Application, CRC Press, Boca Raton, FL, 2006; 397-442.GouldKSListerCFlavonoid function in plantsAndersenØMMarhamKRFlavonoids, Chemistry, Biochemistry and ApplicationCRC PressBoca Raton, FL200639744210.1201/9781420039443.ch8Search in Google Scholar

Akula R, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 2011; 6(11): 1720-1731.2204198910.4161/psb.6.11.17613AkulaRRavishankarGAInfluence of abiotic stress signals on secondary metabolites in plantsPlant Signal Behav201161117201731Search in Google Scholar

Waśkiewicz A, Muzolf-Panek M, Goliński P. Phenolic content changes in plants under salt stress. In: Ahmad P, Azooz MM, Prasad MNV, eds. Ecophysiology and responses of plants under salt stress. Springer 2013.WaśkiewiczAMuzolf-PanekMGolińskiPPhenolic content changes in plants under salt stressAhmadPAzoozMMPrasadMNVEcophysiology and responses of plants under salt stressSpringer201310.1007/978-1-4614-4747-4_11Search in Google Scholar

Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry 2000; 55(6): 481-504.1113065910.1016/S0031-9422(00)00235-1HarborneJBWilliamsCAAdvances in flavonoid research since 1992Phytochemistry2000556481504Search in Google Scholar

Winkel-Shirley B. Biosynthesis of flavonoids and effect of stress. Curr Opin Plant Biol 2002; 5: 218-223. doi: 10.1016/S1369-5266(02)00256-X10.1016/S1369-5266(02)00256-XWinkel-ShirleyB.Biosynthesis of flavonoids and effect of stressCurr Opin Plant Biol2002521822310.1016/S1369-5266(02)00256-XOpen DOISearch in Google Scholar

Agati G, Tattini M. Multiple functional roles of flavonoids in photoprotecion. New Phytol 2010; 186: 786-793.10.1111/j.1469-8137.2010.03269.xAgatiGTattiniMMultiple functional roles of flavonoids in photoprotecionNew Phytol201018678679320569414Open DOISearch in Google Scholar

Rausher MD. The evolution of flavonoids and their genes. In: The science of flavonoids. Springer New York 2006; 175-211.RausherMDThe evolution of flavonoids and their genesThe science of flavonoidsSpringerNew York200617521110.1007/978-0-387-28822-2_7Search in Google Scholar

Swain T, The evolution of flavonoids. In: Plant Flavonoids in Biology and Medicine, Buffalo, New York (USA) 1986.SwainTThe evolution of flavonoidsPlant Flavonoids in Biology and MedicineBuffaloNew York (USA)1986Search in Google Scholar

Stafford HA. Flavonoid evolution: an enzymic approach. Plant Physiol 1991; 96(3): 680-685.1666824210.1104/pp.96.3.680StaffordHAFlavonoid evolution: an enzymic approachPlant Physiol1991963680685Search in Google Scholar

Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 2004; 163: 547-561.10.1111/j.1469-8137.2004.01126.xTattiniMGalardiCPinelliPMassaiRRemoriniDAgatiGDifferential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stressNew Phytol2004163547561Open DOISearch in Google Scholar

Lillo C, Lea US, Ruoff P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 2008; 31: 587-601.1803146910.1111/j.1365-3040.2007.01748.xLilloCLeaUSRuoffPNutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathwayPlant Cell Environ200831587601Search in Google Scholar

Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M. The biosynthesis of flavonoids is enhanced by UV radiation and root zone salinity in L vulgare leaves, J Plant Physiol 2011; 168: 204-21210.1016/j.jplph.2010.07.016AgatiGBiricoltiSGuidiLFerriniFFiniATattiniMThe biosynthesis of flavonoids is enhanced by UV radiation and root zone salinity in L vulgare leavesJ Plant Physiol2011168204212Open DOISearch in Google Scholar

Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sánchez E, Romero L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 2001; 160(2): 315-321.1116460310.1016/S0168-9452(00)00395-2RiveroRMRuizJMGarciaPCLopez-LefebreLRSánchezERomeroLResistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plantsPlant Sci20011602315321Search in Google Scholar

Larkindale J, Huang B. Thermo-tolerance and antioxidant systems in Agrostis stoloifera involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 2004; 161: 405-413.10.1078/0176-1617-01239LarkindaleJHuangBThermo-tolerance and antioxidant systems in Agrostis stoloifera involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethyleneJ Plant Physiol2004161405413Open DOISearch in Google Scholar

Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 2002; 7: 405-410.10.1016/S1360-1385(02)02312-912234732MittlerROxidative stress, antioxidants and stress toleranceTrends Plant Sci20027405410Open DOISearch in Google Scholar

Naya L, Ladrera R, Ramos J, Gonzalez EM, Arrese-Igor C, Minchin FR, Becana M. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 2017; 144: 1104–1114. doi 10.1104/pp.107.099648NayaLLadreraRRamosJGonzalezEMArrese-IgorCMinchinFRBecanaMThe response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plantsPlant Physiol20171441104111410.1104/pp.107.099648191420517468213Open DOISearch in Google Scholar

Jin R, Wang Y, Liu R, Gou J, Chan Z. Physiological and metabolic changes of purslane Portulaca oleracea L.) in response to drought, heat, and combined stresses. Front Plant Sci 2015; 6: 1123. doi: 10.3389/fpls.2015.0112326779204JinRWangYLiuRGouJChanZPhysiological and metabolic changes of purslane Portulaca oleracea L.) in response to drought, heat, and combined stressesFront Plant Sci20156112310.3389/fpls.2015.01123470382626779204Search in Google Scholar

Bologa M, Jităreanu CD, Slabu C, Marta AE. Salinity Stress Effects on the Growing Rates of Tomato Lycopersicon esculentum Mill.). Bulletin USAMV series Agriculture 2015; 72(1): 277-278.BologaMJităreanuCDSlabuCMartaAESalinity Stress Effects on the Growing Rates of Tomato Lycopersicon esculentum Mill.)Bulletin USAMV series Agriculture2015721277278Search in Google Scholar

Gharsallah C, Fakhfakh H, Grubb D, Gorsane F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants. 2016; 8. doi: 10.1093/aobpla/plw055.27543452GharsallahCFakhfakhHGrubbDGorsaneFEffect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivarsAoB Plants2016810.1093/aobpla/plw055509169427543452Search in Google Scholar

Amini F, Ehsanpour AA. Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. Am J Biochem Biotechnol 2005; 1(4): 204-208.10.3844/ajbbsp.2005.204.208AminiFEhsanpourAASoluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato Lycopersicon esculentum Mill.) cultivars under in vitro salt stressAm J Biochem Biotechnol200514204208Open DOISearch in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics