Open Access

Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion


Cite

Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017; 3(7): e1700782.2877603610.1126/sciadv.1700782GeyerRJambeckJRLawKLProduction, use, and fate of all plastics ever madeSci Adv201737e1700782551710728776036Search in Google Scholar

Online resource 1: www.plasticseurope.org last access April 6th 2018Online resource 1www.plasticseurope.orglast access April 6th2018Search in Google Scholar

Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F. Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering 2017; 115: 409-422.10.1016/j.compositesb.2016.09.013SinghNHuiDSinghRAhujaIPSFeoLFraternaliFRecycling of plastic solid waste: A state of art review and future applicationsComposites Part B: Engineering2017115409422Open DOISearch in Google Scholar

Lebreton LC, Van der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J. River plastic emissions to the world’s oceans. Nat Comm 2017; 8: 15611.10.1038/ncomms15611LebretonLCVan der ZwetJDamsteegJWSlatBAndradyAReisserJRiver plastic emissions to the world’s oceansNat Comm2017815611546723028589961Open DOISearch in Google Scholar

Braunegg G, Bona R, Koller M. Sustainable polymer production. Polym-Plast Technol Eng 2004; 43(6): 1779-1793.10.1081/PPT-200040130BrauneggGBonaRKollerMSustainable polymer productionPolym-Plast Technol Eng200443617791793Open DOISearch in Google Scholar

Koller M, Maršálek L, Miranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 2017; 37(A): 24-38.10.1016/j.nbt.2016.05.001KollerMMaršálekLMiranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable mannerNew Biotechnol201737A243827184617Open DOISearch in Google Scholar

Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017; 4(2): 55.10.3390/bioengineering4020055KourmentzaCPlácidoJVenetsaneasNBurniol-FigolsAVarroneCGavalaHNReisMAMRecent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) productionBioengineering20174255559047428952534Open DOISearch in Google Scholar

Lemoigne M. Produits de deshydration et de polymerisation de l’acide β-oxybutyrique. Bull Soc Chim Biol 1926; 8: 770-782.LemoigneMProduits de deshydration et de polymerisation de l’acide β-oxybutyriqueBull Soc Chim Biol19268770782Search in Google Scholar

Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv 2018 (online ahead of print; doi: 10.1016/j.biotechadv.2017.12.006.29248684ObrucaSSedlacekPKollerMKuceraDPernicovaIInvolvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applicationsBiotechnol Adv2018(online ahead of print; doi10.1016/j.biotechadv.2017.12.00629248684Search in Google Scholar

Obruca S, Marova I, Stankova M, Mravcova L, Svoboda Z. Effect of ethanol and hydrogen peroxide on poly (3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World J Microbiol Biotechnol 2010; 26(7): 1261-1267.10.1007/s11274-009-0296-824026931ObrucaSMarovaIStankovaMMravcovaLSvobodaZEffect of ethanol and hydrogen peroxide on poly (3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16World J Microbiol Biotechnol20102671261126724026931Open DOISearch in Google Scholar

Obruca S, Sedlacek P, Mravec F, Samek O, Marova I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly (3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 2016; 100(3): 1365-1376.10.1007/s00253-015-7162-426590589ObrucaSSedlacekPMravecFSamekOMarovaIEvaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly (3-hydroxybutyrate) accumulating cellsAppl Microbiol Biotechnol201610031365137626590589Open DOISearch in Google Scholar

Obruca S, Sedlacek P, Mravec F. Krzyzanek V, Nebesarova J, Samek O, et al The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol 2017; 39: 68-80.10.1016/j.nbt.2017.07.008ObrucaSSedlacekPMravecF. Krzyzanek VNebesarovaJSamekOet alThe presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environmentsNew Biotechnol201739688028736192Open DOISearch in Google Scholar

Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, et al Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol 2018; 102(4): 1923–1931.2934949410.1007/s00253-018-8760-8SlaninovaESedlacekPMravecFMullerovaLSamekOKollerMet alLight scattering on PHA granules protects bacterial cells against the harmful effects of UV radiationAppl Microbiol Biotechnol201810241923193129349494Search in Google Scholar

Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, et al Accumulation of poly (3-hydroxybutyrate) helps bacterial cells to survive freezing. PloS one 2016; 11(6): e0157778.2731528510.1371/journal.pone.0157778ObrucaSSedlacekPKrzyzanekVMravecFHrubanovaKSamekOet alAccumulation of poly (3-hydroxybutyrate) helps bacterial cells to survive freezingPloS one2016116e0157778491208627315285Search in Google Scholar

Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 2016; 17(7): 1157.10.3390/ijms17071157JiangGHillDJKowalczukMJohnstonBAdamusGIrorereVRadeckaICarbon sources for polyhydroxyalkanoates and an integrated biorefineryInt J Mol Sci20161771157496452927447619Open DOISearch in Google Scholar

Dietrich K, Dumont MJ, Del Rio LF, Orsat V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sust Prod Consum 2017; 9: 58-70.DietrichKDumontMJDel RioLFOrsatVProducing PHAs in the bioeconomy—Towards a sustainable bioplasticSust Prod Consum20179587010.1016/j.spc.2016.09.001Search in Google Scholar

Koller M, Sandholzer D, Salerno A, Braunegg G, Narodoslawsky M. Biopolymer from industrial residues: Life cycle assessment of poly (hydroxyalkanoates) from whey. Res Cons Recyc 2013; 73: 64-71.10.1016/j.resconrec.2013.01.017KollerMSandholzerDSalernoABrauneggGNarodoslawskyMBiopolymer from industrial residues: Life cycle assessment of poly (hydroxyalkanoates) from wheyRes Cons Recyc2013736471Open DOISearch in Google Scholar

Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 2015; 29(2): 135-144.10.15255/CABEQ.2014.2253ObrucaSBenesovaPMarsalekLMarovaIUse of lignocellulosic materials for PHA productionChem Biochem Eng Q2015292135144Open DOISearch in Google Scholar

Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 2007; 130: 411–421.10.1016/j.jbiotec.2007.05.01117602776AlbuquerqueMGEEiroaMTorresCNunesBRReisMAMStrategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molassesJ Biotechnol200713041142117602776Open DOISearch in Google Scholar

Queirós D, Rossetti S, Serafim LS. PHA production by mixed cultures: a way to valorize wastes from pulp industry. Biores Technol 2014; 157: 197-205.10.1016/j.biortech.2014.01.099QueirósDRossettiSSerafimLSPHA production by mixed cultures: a way to valorize wastes from pulp industryBiores Technol201415719720524556373Open DOISearch in Google Scholar

Pittmann T, Steinmetz H. Polyhydroxyalkanoate production on waste water treatment plants: Process scheme, operating conditions and potential analysis for German and European municipal waste water treatment plants. Bioengineering 2017; 4(2): 54.10.3390/bioengineering4020054PittmannTSteinmetzHPolyhydroxyalkanoate production on waste water treatment plants: Process scheme, operating conditions and potential analysis for German and European municipal waste water treatment plantsBioengineering20174254559046128952533Open DOISearch in Google Scholar

Kourmentza C, Koutra E, Venetsaneas N, Kornaros M. Integrated biorefinery approach for the valorization of olive mill waste streams towards sustainable biofuels and bio-based products. In: Microbial Applications Vol. 1; 2017, pp. 211-238, Springer, Cham.KourmentzaCKoutraEVenetsaneasNKornarosMIntegrated biorefinery approach for the valorization of olive mill waste streams towards sustainable biofuels and bio-based productsMicrobial ApplicationsVol. 12017211238SpringerCham10.1007/978-3-319-52666-9_10Search in Google Scholar

Troschl C, Meixner K, Drosg B. Cyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering 2017: 4(2): 26.10.3390/bioengineering4020026TroschlCMeixnerKDrosgBCyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plantBioengineering20174226559047028952505Open DOISearch in Google Scholar

Shahzad K, Narodoslawsky M, Sagir M, Ali N, Ali S, Rashid MI, et al Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. Waste Manage 2017; 67: 73-85.10.1016/j.wasman.2017.05.047ShahzadKNarodoslawskyMSagirMAliNAliSRashidMIet alTechno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester productionWaste Manage201767738528595804Open DOISearch in Google Scholar

Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of poly [R-3-hydroxyalkanoates)(PHA) biopolyesters from surrounding biomass. Eng Life Sci 2013; 13(6): 549-562.10.1002/elsc.201300021KollerMNiebelschützHBrauneggGStrategies for recovery and purification of poly [R-3-hydroxyalkanoates)(PHA) biopolyesters from surrounding biomassEng Life Sci2013136549562Open DOISearch in Google Scholar

Kosseva MR, Rusbandi E. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromolecul 2018; 107(A): 762-77810.1016/j.ijbiomac.2017.09.054KossevaMRRusbandiETrends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processingInt J Biol Macromolecul2018107A76277828928063Open DOISearch in Google Scholar

Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A. PHA recovery from biomass. Biomacromolecules 2013; 14(9): 2963-2972.10.1021/bm401024423875914MadkourMHHeinrichDAlghamdiMAShabbajIISteinbüchelAPHA recovery from biomassBiomacromolecules20131492963297223875914Open DOISearch in Google Scholar

Koller M, Bona R, Chiellini E, Braunegg G. Extraction of short-chain-length poly-[R-hydroxyalkanoates] scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressure. Biotechnol Lett 2013; 35(7): 1023-1028.10.1007/s10529-013-1185-723525946KollerMBonaRChielliniEBrauneggGExtraction of short-chain-length poly-[R-hydroxyalkanoates] scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressureBiotechnol Lett20133571023102823525946Open DOISearch in Google Scholar

Daly SR, Fathi A, Bahramian B, Manavitehrani I, McClure DD, Valtchev P, et al A green process for the purification of biodegradable poly(β-hydroxybutyrate). J Supercrit Fluids 2018; 135: 84-90.10.1016/j.supflu.2018.01.007DalySRFathiABahramianBManavitehraniIMcClureDDValtchevPet alA green process for the purification of biodegradable poly(β-hydroxybutyrate)J Supercrit Fluids20181358490Open DOISearch in Google Scholar

Dubey S, Bharmoria P, Gehlot PS, Agrawal V, Kumar A, Mishra S. 1-Ethyl-3-methylimidazolium diethylphosphate based extraction of bioplastic “Polyhydroxyalkanoates” from bacteria: Green and Sustainable Approach. ACS Sust Chem Eng 2017; 6(1): 766-773.DubeySBharmoriaPGehlotPSAgrawalVKumarAMishraS1-Ethyl-3-methylimidazolium diethylphosphate based extraction of bioplastic “Polyhydroxyalkanoates” from bacteria: Green and Sustainable ApproachACS Sust Chem Eng20176176677310.1021/acssuschemeng.7b03096Search in Google Scholar

Ong SY, Zainab-L I, Pyary S, Sudesh K. A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 2018; 122(5): 2117–2127.OngSYZainab-LIPyarySSudeshKA novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animalsAppl Microbiol Biotechnol201812252117212710.1007/s00253-018-8788-929404644Search in Google Scholar

Hsiao LJ, Lee MC, Chuang PJ, Kuo YY, Lin JH, Wu TM, Li SY. The production of poly (3-hydroxybutyrate) by thermophilic Caldimonas manganoxidans from glycerol. J Polym Res 2018; 25(4): 85.10.1007/s10965-018-1486-6HsiaoLJLeeMCChuangPJKuoYYLinJHWuTMLiSYThe production of poly (3-hydroxybutyrate) by thermophilic Caldimonas manganoxidans from glycerolJ Polym Res201825485Open DOISearch in Google Scholar

Koller M. Production of Polyhydroxyalkanoate (PHA) Biopolyesters by Extremophiles. MOJ Polym Sci 2017; 1(2): 1-19.KollerMProduction of Polyhydroxyalkanoate (PHA) Biopolyesters by ExtremophilesMOJ Polym Sci20171211910.15406/mojps.2017.01.00011Search in Google Scholar

Kucera D, Pernicová I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, et al Characterization of the promising poly (3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila Biores Technol 2018; 256: 552-556.10.1016/j.biortech.2018.02.062KuceraDPernicováIKovalcikAKollerMMullerovaLSedlacekPet alCharacterization of the promising poly (3-hydroxybutyrate) producing halophilic bacterium Halomonas halophilaBiores Technol201825655255629478784Open DOISearch in Google Scholar

Rodriguez-Contreras A, Koller M, Braunegg G, Marqués-Calvo MS. Poly[R-3-hydroxybutyrate] production under different salinity conditions by a novel Bacillus megaterium strain. New Biotechnol 2016; 33(1): 73-77.10.1016/j.nbt.2015.08.006Rodriguez-ContrerasAKollerMBrauneggGMarqués-CalvoMSPoly[R-3-hydroxybutyrate] production under different salinity conditions by a novel Bacillus megaterium strainNew Biotechnol2016331737726344348Open DOISearch in Google Scholar

Chen GQ, Hajnal I. The ‘PHAome’. Trends Biotechnol 2015; 33(10): 559-564.10.1016/j.tibtech.2015.07.006ChenGQHajnalIThe ‘PHAome’Trends Biotechnol2015331055956426409775Open DOISearch in Google Scholar

Rodriguez-Perez S, Serrano A, Pantión AA, Alonso-Fariñas B. Challenges of scaling-up PHA production from waste streams. A review. J Environ Manage 2018; 205: 215-230.10.1016/j.jenvman.2017.09.08328987985Rodriguez-PerezSSerranoAPantiónAAAlonso-FariñasBChallenges of scaling-up PHA production from waste streams. A reviewJ Environ Manage201820521523028987985Open DOISearch in Google Scholar

Kaur G, Roy I. Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 2015; 29(2): 157-172.10.15255/CABEQ.2014.2255KaurGRoyIStrategies for large-scale production of polyhydroxyalkanoatesChem Biochem Eng Q2015292157172Open DOISearch in Google Scholar

Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, et al Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 2005; 6(2): 561-565.10.1021/bm049478b15762613KollerMBonaRBrauneggGHermannCHorvatPKroutilMet alProduction of polyhydroxyalkanoates from agricultural waste and surplus materialsBiomacromolecules20056256156515762613Open DOISearch in Google Scholar

Braunegg G, Genser K, Bona R, Haage G, Schellauf F, Winkler E. Production of PHAs from agricultural waste material. Macromol Symp 1999; 144(1): 375-383.10.1002/masy.19991440135BrauneggGGenserKBonaRHaageGSchellaufFWinklerEProduction of PHAs from agricultural waste materialMacromol Symp19991441375383Open DOISearch in Google Scholar

Moita R, Freches A, Lemos PC. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 2014; 58: 9-20.2473187210.1016/j.watres.2014.03.066MoitaRFrechesALemosPCCrude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial culturesWater Res20145892024731872Search in Google Scholar

Perez Amaro L, Abdelwahab MA, Morelli A, Chiellini F, Chiellini E. Bacterial polyesters: The issue of their market acceptance and potential solutions. In: Koller M. (Ed.), Recent Advances in Biotechnology, 2016, Vol. 2, pp. 3-74; Bentham Science PublishersPerez AmaroLAbdelwahabMAMorelliAChielliniFChielliniEBacterial polyesters: The issue of their market acceptance and potential solutionsKollerMRecent Advances in Biotechnology2016Vol. 2374Bentham Science Publishers10.2174/9781681083735116020004Search in Google Scholar

Koller M, Bona R, Hermann C, Horvat P, Martinz J, Neto J, et al Biotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocat Biotrans 2005; 23(5): 329-337.10.1080/10242420500292252KollerMBonaRHermannCHorvatPMartinzJNetoJet alBiotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substratesBiocat Biotrans2005235329337Open DOISearch in Google Scholar

Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 2015; 29(2): 135-144.10.15255/CABEQ.2014.2253ObrucaSBenesovaPMarsalekLMarovaIUse of lignocellulosic materials for PHA productionChem Biochem Eng Q2015292135144Open DOISearch in Google Scholar

Ahn WS, Park SJ, Lee SY. Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 2000; 66: 3624-3627.1091983010.1128/AEM.66.8.3624-3627.2000AhnWSParkSJLeeSYProduction of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solutionAppl Environ Microbiol200066362436279219410919830Search in Google Scholar

Koller M, Salerno A, Muhr A, Reiterer A, Chiellini E, Casella S, et al Chapter 2: Whey lactose as a raw material for microbial production of biodegradable polyester. In: Saleh HE-DM (Ed.). Polyesters. InTech, Rijeka; 2012, pp.19-60.KollerMSalernoAMuhrAReitererAChielliniECasellaSet alChapter 2: Whey lactose as a raw material for microbial production of biodegradable polyesterSalehHE-DMPolyestersInTechRijeka2012196010.5772/48737Search in Google Scholar

Ahn WS, Park SJ, Lee SY. Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli Biotechnol Lett 2001; 23: 235-240.10.1023/A:1005633418161AhnWSParkSJLeeSYProduction of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coliBiotechnol Lett200123235240Open DOISearch in Google Scholar

Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M. High cell-density production of poly(3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 2017; 37: 117-122.10.1016/j.nbt.2016.06.1461HaasCEl-NajjarTVirgoliniNSmerilliMNeureiterMHigh cell-density production of poly(3-hydroxybutyrate) in a membrane bioreactorNew Biotechnol20173711712227373779Open DOISearch in Google Scholar

Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S. Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering 2017: 4(2): 53.10.3390/bioengineering4020053KuceraDBenesovaPLadickyPPekarMSedlacekPObrucaSProduction of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and ligniteBioengineering20174253559045728952532Open DOISearch in Google Scholar

Silva LF, Taciro MK, Ramos MM, Carter JM, Pradella JGC, Gomez JGC. Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biot 2004; 31(6): 245-25410.1007/s10295-004-0136-7SilvaLFTaciroMKRamosMMCarterJMPradellaJGCGomezJGCPoly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysateJ Ind Microbiol Biot200431624525415221664Open DOISearch in Google Scholar

Haas C, Steinwandter V, Diaz De Apodaca E, Maestro Madurga B, Smerilli M, Dietrich T, et al Production of PHB from chicory roots–comparison of three Cupriavidus necator strains. Chem Biochem Eng Q 2015; 29(2): 99-11210.15255/CABEQ.2014.2250HaasCSteinwandterVDiazDe Apodaca EMaestroMadurga BSmerilliMDietrichTet alProduction of PHB from chicory roots–comparison of three Cupriavidus necator strainsChem Biochem Eng Q201529299112Open DOISearch in Google Scholar

Hájek M, Skopal F, Čapek L, Černoch M, Kutálek P. Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO. Energy 2012; 48(1): 392-397.10.1016/j.energy.2012.06.052HájekMSkopalFČapekLČernochMKutálekPEthanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaOEnergy2012481392397Open DOISearch in Google Scholar

Xiao Y, Xiao G, Varma A. A universal procedure for crude glycerol purification from different feedstocks in biodiesel production: experimental and simulation study. Ind Eng Chem Res 2013; 52(39): 14291-14296.10.1021/ie402003uXiaoYXiaoGVarmaAA universal procedure for crude glycerol purification from different feedstocks in biodiesel production: experimental and simulation studyInd Eng Chem Res201352391429114296Open DOISearch in Google Scholar

Koncar M, Mittelbach M, Gössler H, Hammer W. Catalytic trans esterification of a triglycerides and fatty acids. U.S. Patent No. 6,696,583, 24 Feb. 2004.KoncarMMittelbachMGösslerHHammerWCatalytic trans esterification of a triglycerides and fatty acidsU.S. Patent No. 6,696,583, 24 Feb2004Search in Google Scholar

Skopal F, Komers K, Machek J. A new method of dealcoholization of crude biodiesel fuel. Lipid/Fett 1997;99(3):87-90.10.1002/lipi.19970990307SkopalFKomersKMachekJA new method of dealcoholization of crude biodiesel fuelLipid/Fett19979938790Open DOISearch in Google Scholar

Moita R, Freches A, Lemos PC. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 2014; 58: 9-20.2473187210.1016/j.watres.2014.03.066MoitaRFrechesALemosPCCrude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial culturesWater Res201458920Search in Google Scholar

Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE. A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 2006; 40(7): 2433-2437.10.1021/es0517668WardPGGoffMDonnerMKaminskyWO’ConnorKEA two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplasticEnviron Sci Technol200640724332437Open DOISearch in Google Scholar

Johnston B, Jiang G, Hill D, Adamus G, Kwiecień I, Zięba M, et al The molecular level characterization of biodegradable polymers originated from polyethylene using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate production. Bioengineering 2017; 4(3): 73.10.3390/bioengineering4030073JohnstonBJiangGHillDAdamusGKwiecieńIZiębaMet alThe molecular level characterization of biodegradable polymers originated from polyethylene using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate productionBioengineering20174373Open DOISearch in Google Scholar

Guimarães PMR, Teixeira JA, Domingues L. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 2010; 28(3): 375-84.10.1016/j.biotechadv.2010.02.00220153415GuimarãesPMRTeixeiraJADominguesLFermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese wheyBiotechnol Adv201028337584Open DOISearch in Google Scholar

Kosikowski FV. Whey utilisation and whey products. J Dairy Sci 1979; 62: 1149-60.10.3168/jds.S0022-0302(79)83389-5KosikowskiFVWhey utilisation and whey productsJ Dairy Sci197962114960Open DOISearch in Google Scholar

Illanes A. Whey upgrading by enzyme biocatalysis. Electron J Biotechnol 2011; 14(6): 15.IllanesAWhey upgrading by enzyme biocatalysisElectron J Biotechnol20111461510.2225/vol14-issue6-fulltext-11Search in Google Scholar

Ghaley AE, El-Taweel AA. Kinetic modelling of continuous production of ethanol from cheese whey. Biomass Bioenerg 1997; 12(6): 461-472.10.1016/S0961-9534(97)00012-3GhaleyAEEl-TaweelAAKinetic modelling of continuous production of ethanol from cheese wheyBiomass Bioenerg1997126461472Open DOISearch in Google Scholar

Aneja RP, Mathur BN, Chandan RC, Banerjee AK. Technology of Indian milk products: Handbook on process technology modernization for professionals, entrepreneurs and scientists. Dairy India Yearbook 2002.AnejaRPMathurBNChandanRCBanerjeeAKTechnology of Indian milk products: Handbook on process technology modernization for professionals, entrepreneurs and scientistsDairy India Yearbook2002Search in Google Scholar

Corgneau M, Scher J, Ritie-Pertusa L, Le D, Petit, J, Nikolova Y, et al Recent advances on lactose intolerance: Tolerance thresholds and currently available answers. Crit Rev Food Sci Nutr 2017; 57(15): 3344-3356.2671346010.1080/10408398.2015.1123671CorgneauMScherJRitie-PertusaLLeDPetitJNikolovaYet alRecent advances on lactose intolerance: Tolerance thresholds and currently available answersCrit Rev Food Sci Nutr201757153344335626713460Search in Google Scholar

Viñas M, Borzacconi L, Martínez J. Anaerobic treatment of yeast manufacturing wastewater in UASB reactors. Environ Technol 1994; 15: 79–85.10.1080/09593339409385406ViñasMBorzacconiLMartínezJAnaerobic treatment of yeast manufacturing wastewater in UASB reactorsEnviron Technol1994157985Open DOISearch in Google Scholar

Gonzales Siso MI. The biotechnological utilization of cheese whey: A review. Bioresource Technol 1996; 57: 1-11.10.1016/0960-8524(96)00036-3Gonzales SisoMIThe biotechnological utilization of cheese whey: A reviewBioresource Technol199657111Open DOISearch in Google Scholar

Koller M, Marsalek L, Braunegg G. PHA Biopolyester production from surplus whey: microbiological and engineering aspects. In: Koller M. (Ed.), Recent Advances in Biotechnology, 2016, Vol. 1, pp. 100-174, Bentham Science Publishers.KollerMMarsalekLBrauneggGPHA Biopolyester production from surplus whey: microbiological and engineering aspectsKollerMRecent Advances in Biotechnology2016Vol. 1100174Bentham Science Publishers10.2174/9781681083254116010005Search in Google Scholar

Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G. Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 2007; 7(2): 218-226.1729541010.1002/mabi.200600211KollerMHessePBonaRKutscheraCAtlićABrauneggGPotential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from wheyMacromol Biosci20077221822617295410Search in Google Scholar

Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutscher C., et al Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora Biores Technol 2008; 99(11): 4854-4863.10.1016/j.biortech.2007.09.049KollerMBonaRChielliniEFernandesEGHorvatPKutscherC.et alPolyhydroxyalkanoate production from whey by Pseudomonas hydrogenovoraBiores Technol200899114854486318053709Open DOISearch in Google Scholar

Koller M, Atlić A, Gonzalez-Garcia Y, Kutschera C, Braunegg G. Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose. Macromol Symp 2008; 272(1): 87-92).10.1002/masy.200851212KollerMAtlićAGonzalez-GarciaYKutscheraCBrauneggGPolyhydroxyalkanoate (PHA) biosynthesis from whey lactoseMacromol Symp200827218792Open DOISearch in Google Scholar

Han J, Hou J, Zhang F, Ai G, Li M, Cai S, et al Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei Appl Environ Microbiol 2013; 79(9): 2922-2931.2343588610.1128/AEM.03915-12HanJHouJZhangFAiGLiMCaiSet alMultiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterraneiAppl Environ Microbiol201379929222931362312523435886Search in Google Scholar

Koller M. Recycling of waste streams of the biotechnological poly (hydroxyalkanoate) production by Haloferax mediterranei on whey. Int J Polym Sci 2015; 2015: article ID 370164KollerMRecycling of waste streams of the biotechnological poly (hydroxyalkanoate) production by Haloferax mediterranei on wheyInt J Polym Sci20152015: article ID 37016410.1155/2015/370164Search in Google Scholar

Pais J, Serafim LS, Freitas F, Reis MAM. Conversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei New Biotechnol 2015; 33(1): 224-30.PaisJSerafimLSFreitasFReisMAMConversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterraneiNew Biotechnol20153312243010.1016/j.nbt.2015.06.00126134839Search in Google Scholar

Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea 2013; 2013: article ID 129268.24453697Hermann-KraussCKollerMMuhrAFaslHStelzerFBrauneggGArchaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-productsArchaea20132013: article ID 12926810.1155/2013/129268388072524453697Search in Google Scholar

Huang TY, Duan KJ, Huang SY, Chen CW. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei J Ind Microbiol Biotechnol 2006; 33(8): 701-6.1649135310.1007/s10295-006-0098-zHuangTYDuanKJHuangSYChenCWProduction of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterraneiJ Ind Microbiol Biotechnol2006338701616491353Search in Google Scholar

Chen CW, Don TM, Yen HF. Enzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei Process Biochem 2006; 41(11): 2289-96.10.1016/j.procbio.2006.05.026ChenCWDonTMYenHFEnzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterraneiProcess Biochem20064111228996Open DOISearch in Google Scholar

Alsafadi D, Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei New biotechnol 2017; 34: 47-53.10.1016/j.nbt.2016.05.003AlsafadiDAl-MashaqbehOA one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterraneiNew biotechnol201734475327224675Open DOISearch in Google Scholar

Obruca S, Marova I, Melusova S, Mravcova L. Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol 2011; 61(4): 947-953.10.1007/s13213-011-0218-5ObrucaSMarovaIMelusovaSMravcovaLProduction of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037Ann Microbiol2011614947953Open DOISearch in Google Scholar

Koller M, Puppi D, Chiellini F, Braunegg G. Comparing chemical and enzymatic Hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis. Int J Pharm Sci Res 2016; 3(1).KollerMPuppiDChielliniFBrauneggGComparing chemical and enzymatic Hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesisInt J Pharm Sci Res20163110.15344/2394-1502/2016/112Search in Google Scholar

Obruca S, Benesova P, Oborna J, Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator Biotechnol Lett 2014; 36(4): 775-781.2424323210.1007/s10529-013-1407-zObrucaSBenesovaPObornaJMarovaIApplication of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necatorBiotechnol Lett201436477578124243232Search in Google Scholar

Koller M. Poly(hydroxyalkanoates) for food packaging: Application and attempts towards implementation. App Food Biotechnol 2014; 1(1): 3-15.KollerMPoly(hydroxyalkanoates) for food packaging: Application and attempts towards implementationApp Food Biotechnol201411315Search in Google Scholar

Cinelli P, Schmid M, Bugnicourt E, et al. Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym Degrad Stabil 2014; 108: 151-7.10.1016/j.polymdegradstab.2014.07.007CinelliPSchmidMBugnicourtEet alWhey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradabilityPolym Degrad Stabil20141081517Open DOISearch in Google Scholar

Koller M, Braunegg G. Biomediated production of structurally diverse poly(hydroxyalkanoates) from surplus streams of the animal processing industry. Polimery 2015;60:298-308. doi:10.14314/polimery.2015.29810.14314/polimery.2015.298KollerMBrauneggGBiomediated production of structurally diverse poly(hydroxyalkanoates) from surplus streams of the animal processing industryPolimery20156029830810.14314/polimery.2015.298Open DOISearch in Google Scholar

Online resource 2: http://cordis.europa.eu/result/rcn/58861_en.html (last accessed April 13th 2018)Online resource 2http://cordis.europa.eu/result/rcn/58861_en.htmllast accessed April 13th2018Search in Google Scholar

Ebringer A. The problem of Bovine Spongiform Encephalopathy also known as “mad cow disease” in the United Kingdom. In: Multiple sclerosis, mad cow disease and Acinetobacter 2015, pp. 15-20. Springer, Cham.EbringerAThe problem of Bovine Spongiform Encephalopathy also known as “mad cow disease” in the United KingdomMultiple sclerosis, mad cow disease and Acinetobacter20151520SpringerCham10.1007/978-3-319-02735-7_3Search in Google Scholar

Schober S, Seidl I, Mittelbach M. Ester content evaluation in biodiesel from animal fats and lauric oils. Europ J Lipid Sci Technol. 2006; 108: 309-314.10.1002/ejlt.200500324SchoberSSeidlIMittelbachMEster content evaluation in biodiesel from animal fats and lauric oilsEurop J Lipid Sci Technol2006108309314Open DOISearch in Google Scholar

Koller M, Maršálek L. Principles of glycerol-based Polyhydroxyalkanoate (PHA) production. Appl Food Biotechnol. 2015; 2(4): 3-10.KollerMMaršálekLPrinciples of glycerol-based Polyhydroxyalkanoate (PHA) productionAppl Food Biotechnol201524310Search in Google Scholar

Koller M, Maršalek L. Potential of diverse prokaryotic organisms for glycerol-based Polyhydroxyalkanoate production. Appl Food Biotechnol. 2015; 2(3): 3-15.KollerMMaršalekLPotential of diverse prokaryotic organisms for glycerol-based Polyhydroxyalkanoate productionAppl Food Biotechnol201523315Search in Google Scholar

Špoljarić IV, Lopar M, Koller, M., Muhr A, Salerno A, Reiterer A, Horvat P. In silico optimization and low structured kinetic model of poly[R-3-hydroxybutyrate] synthesis by Cupriavidus necator DSM 545 by fed-batch cultivation on glycerol. J Biotechnol. 2013; 168: 625-635.2400193310.1016/j.jbiotec.2013.08.019ŠpoljarićIVLoparMKollerM.MuhrASalernoAReitererAHorvatPIn silico optimization and low structured kinetic model of poly[R-3-hydroxybutyrate] synthesis by Cupriavidus necator DSM 545 by fed-batch cultivation on glycerolJ Biotechnol201316862563524001933Search in Google Scholar

Koller M, Salerno A, Muhr A, Reiterer A, Braunegg G. Polyhydroxyalkanoates: Biodegradable polymers and plastics from renewable resources. Mater Tehnol. 2013; 47: 5-12.KollerMSalernoAMuhrAReitererABrauneggGPolyhydroxyalkanoates: Biodegradable polymers and plastics from renewable resourcesMater Tehnol201347512Search in Google Scholar

Titz M, Kettl KH, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M. Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ Pol. 2012; 14: 495-503.10.1007/s10098-012-0464-7TitzMKettlKHShahzadKKollerMSchnitzerHNarodoslawskyMProcess optimization for efficient biomediated PHA production from animal-based waste streamsClean Technol Environ Pol201214495503Open DOISearch in Google Scholar

Shahzad K, Kettl KH, Titz M, Koller M, Schnitzer H, Narodoslawsky M. Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol Environ Pol. 2013; 15: 525-536.10.1007/s10098-013-0608-4ShahzadKKettlKHTitzMKollerMSchnitzerHNarodoslawskyMComparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resourcesClean Technol Environ Pol201315525536Open DOISearch in Google Scholar

Cromwick AM, Foglia T, Lenz RW. The microbial production of poly (hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol. 1996; 46: 464-469.10.1007/s002530050845CromwickAMFogliaTLenzRWThe microbial production of poly (hydroxyalkanoates) from tallowAppl Microbiol Biotechnol199646464469Open DOISearch in Google Scholar

Ashby RD, Foglia TA. Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol. 1998; 49: 431-437.10.1007/s002530051194AshbyRDFogliaTAPoly(hydroxyalkanoate) biosynthesis from triglyceride substratesAppl Microbiol Biotechnol199849431437Open DOISearch in Google Scholar

Nonato R, Mantelatto P, Rossell C. Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol. 2001; 57(1-2): 1-5.1169390410.1007/s002530100732NonatoRMantelattoPRossellCIntegrated production of biodegradable plastic, sugar and ethanolAppl Microbiol Biotechnol2001571-21511693904Search in Google Scholar

Koller M, Salerno A, Strohmeier K, Schober S, Mittelbach M, Illieva V, Chiellini E, Braunegg G. Novel precursors for production of 3-hydroxyvalerate-containing poly[R-hydroxyalkanoate]s. Biocat Biotrans. 2014; 32: 161-167.10.3109/10242422.2014.913580KollerMSalernoAStrohmeierKSchoberSMittelbachMIllievaVChielliniEBrauneggGNovel precursors for production of 3-hydroxyvalerate-containing poly[R-hydroxyalkanoate]sBiocat Biotrans201432161167Open DOISearch in Google Scholar

Muhr A, Rechberger EM, Salerno A, Reiterer A, Schiller M, Kwiecien M, Adamus G, Kowalczuk M, Strohmeier K, Schober S, Mittelbach M, Koller M. Biodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis React Funct Polym. 2013; 73: 1391-1398.10.1016/j.reactfunctpolym.2012.12.009MuhrARechbergerEMSalernoAReitererASchillerMKwiecienMAdamusGKowalczukMStrohmeierKSchoberSMittelbachMKollerMBiodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by Ps citronellolisReact Funct Polym20137313911398Open DOISearch in Google Scholar

Muhr A, Rechberger, EM, Salerno A, Reiterer A, Malli K, Strohmeier K, Schober S, Mittelbach M, Koller M. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol. 2013; 165: 45-51.10.1016/j.jbiotec.2013.02.00323467001MuhrARechbergerEMSalernoAReitererAMalliKStrohmeierKSchoberSMittelbachMKollerMNovel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived wasteJ Biotechnol2013165455123467001Open DOISearch in Google Scholar

Riedel SL, Jahns S, Koenig S, Bock MC, Brigham CJ, Bader J, Stahl U. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol. 2015; 214: 119-127.10.1016/j.jbiotec.2015.09.00226428087RiedelSLJahnsSKoenigSBockMCBrighamCJBaderJStahlUPolyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fatsJ Biotechnol201521411912726428087Open DOISearch in Google Scholar

Kettl K-H, Titz M, Koller M, Shahzad K, Schnitzer H, Narodoslawsky M. Process design and evaluation of biobased polyhydroxyalkanoates (PHA) production. Chem Eng Trans. 2011; 25: 983–988KettlK-HTitzMKollerMShahzadKSchnitzerHNarodoslawskyMProcess design and evaluation of biobased polyhydroxyalkanoates (PHA) productionChem Eng Trans201125983988Search in Google Scholar

Schnitzer H, Ulgiati S. Less bad is not good enough: approaching zero emissions techniques and systems. J Cleaner Prod. 2007; 15: 1185-1189.10.1016/j.jclepro.2006.08.001SchnitzerHUlgiatiSLess bad is not good enough: approaching zero emissions techniques and systemsJ Cleaner Prod20071511851189Open DOISearch in Google Scholar

Narodoslawsky M, Shahzad K, Kollmann R, Schnitzer H. LCA of PHA production–identifying the ecological potential of bio-plastic. Chem Biochem Eng Q. 2015; 29: 299-305.10.15255/CABEQ.2014.2262NarodoslawskyMShahzadKKollmannRSchnitzerHLCA of PHA production–identifying the ecological potential of bio-plasticChem Biochem Eng Q201529299305Open DOISearch in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics