Open Access

The Effect of Polymer Waste Addition on the Quality of Concrete Composite

   | Dec 17, 2021

Cite

Aggarwal, Y., Siddique, R., 2014. Microstructure and properties of concrete using bottom ash and waste foundry sand as partialreplacement of fine aggregates. Construction and Building Materiasl, 54, 210–223.10.1016/j.conbuildmat.2013.12.051 Search in Google Scholar

Albano, C., Camacho, N., Reyes, J., Feliu, J.L., Herna´ndez, M., 2005. Influence of scrap rubber to Portland I concrete composites: destructive and non-destructive testing, Compos. Struct. 71, 439–446.10.1016/j.compstruct.2005.09.037 Search in Google Scholar

Babu, K. G., Babu, D. S., 2003. Behaviour of lightweight expanded polystyrene concrete containing silica fume, Cement and Concrete Research, 33, 755–762.10.1016/S0008-8846(02)01055-4 Search in Google Scholar

Babu, D. S., Babu, K. G., Wee, T., 2005. Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cement and Concrete Research, 35, 1218–1223.10.1016/j.cemconres.2004.11.015 Search in Google Scholar

Babu, D.S., Babu, K.G., Tiong-Huan, W., 2006. Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete, Cement and Concrete Composites, 28, 520–527.10.1016/j.cemconcomp.2006.02.018 Search in Google Scholar

Balaha, M.M., Badawy, A.A.M., Hashish, M., 2007. Effect of using ground tire rubber as fine aggregate on the behaviour of concrete mixes, Indian J. Eng. Mater. Sci. 14, 427–435. Search in Google Scholar

Bostanci, S.C., Limbachiya, M., Kew, H., 2016. Portland-composite and composite cement concretes made with coarse recycled and recycled glass sand aggregates: Engineering and durability properties. Construction and Building Materiasl, 128, 324–340.10.1016/j.conbuildmat.2016.10.095 Search in Google Scholar

Batayneh, Malek K., Marie, Iqbal, Asi, Ibrahim, 2008. Promoting the use of crumb rubber concrete in developing countries, Waste Manage. 28, 2171–2176.10.1016/j.wasman.2007.09.03518956487 Search in Google Scholar

Bravo, M.l, de Brito, J., 2012. Concrete made with used tyre aggregate: durability-related performance, J. Clean. Prod. 25, 42–50.10.1016/j.jclepro.2011.11.066 Search in Google Scholar

Chaudhary, M., Srivastava, V., Agarwal, V., 2014. Effect of waste low density polyethylene on mechanical properties of concrete, J. Acad. Ind. Res., 3, 123. Search in Google Scholar

Chen, B., Liu, J., 2004. Properties of lightweight expanded polystyrene concrete reinforced with steel fiber, Cement and Concrete Research, 34, 1259–1263.10.1016/j.cemconres.2003.12.014 Search in Google Scholar

Choi, Y. W., Moon, D. J., Chung, J. S., Cho, S. K., 2005. Effects of waste PET bottlers aggregate on the properties of concrete, Cement Concrete Research, 35, 776–781.10.1016/j.cemconres.2004.05.014 Search in Google Scholar

Choi, Y. W., Moon, D. J., Kim, Y. J., Lachemi, M., 2009. Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Construction and Building Materiasl, 23, 2829–2835.10.1016/j.conbuildmat.2009.02.036 Search in Google Scholar

Choi, S. -J., Kim, Y. -U., Oh, T.-G., Cho, B.-S, 2020. Compressive Strength, Chloride Ion Penetrability, and Carbonation Characteristic of Concrete with Mixed Slag Aggregate. Materials, 13, 94010.3390/ma13040940707872532093204 Search in Google Scholar

Fraternali, F., Ciancia, V., Chechile, R., Rizzano, G., Feo, L., Incarnato, L., 2010. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete, Compos. Struct., 93, 2368–2374.10.1016/j.compstruct.2011.03.025 Search in Google Scholar

Fraternali, F., Spadea, S., Berardi, V. P., 2014. Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes, Construction and Building Materiasl, 61, 293–302.10.1016/j.conbuildmat.2014.03.019 Search in Google Scholar

Halicka, A., Ogrodnik, P., Zegardlo, B., 2013. Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materiasl, 48, 295–305.10.1016/j.conbuildmat.2013.06.063 Search in Google Scholar

Han, C.-G., Hwang, Y.-S., Yang, S.-H., Gowripalan, N., 2005. Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement, Cem. Concr. Res. 35, 1747–1753.10.1016/j.cemconres.2004.11.013 Search in Google Scholar

Hsie, M., Tu, C., Song, P., 2008. Mechanical properties of polypropylene hybrid fiber-reinforced concrete, Mater. Sci. Eng.: A 494, 153–157.10.1016/j.msea.2008.05.037 Search in Google Scholar

Kan, A., Demirbog˘a, R., 2009. A novel material for lightweight concrete production, Cement and Concrete Composites, 31, 489–495.10.1016/j.cemconcomp.2009.05.002 Search in Google Scholar

Kishore, K., Gupta, N., 2020. Application of domestic & industrial waste materials in concrete: A review. Materials Today Proceedings, 26, 2926–2931.10.1016/j.matpr.2020.02.604 Search in Google Scholar

Khadakbhavi, B., Reddy, D.V.V., Ullagaddi, D., 2010. Effect of aspect ratios of waste Hdpe fibres on the properties of fibres on fiber reinforced concrete, Res. J. Eng. Technol., 3, 13–21. Search in Google Scholar

Kołtuńczyk E., Nowicka G., 2007. Effect of poly(sodium- 4-styrenesulphonate) additives on properties of cement suspensions, Proceedings of International Scientific Conference „Surfactants and Dispersed Systems in Theory and Practice”, Ed: K.A. Wilk, PALMAPress, Wrocław, 533–536. Search in Google Scholar

Kosior-Kazberuk M., Berkowski P., 2016. Fracture Mechanics Parameters of Fine Grained Concrete with Polypropylene Fibres, Proc. Eng. 161, 157-162.10.1016/j.proeng.2016.08.515 Search in Google Scholar

Madandoust, R., Ranjbar, M. M., Mousavi, S. Y., 2011. An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene, Construction and Building Materiasl, 25, 3721–3731.10.1016/j.conbuildmat.2011.04.018 Search in Google Scholar

Martínez-Barrera, G., Vigueras-Santiago, E., Hernández-López, S., Brostow, W., Menchaca-Campos, C., 2005. Mechanical improvement of concrete by irradiated polypropylene fibers, Polym. Eng. Sci. 45, 1426–1431.10.1002/pen.20418 Search in Google Scholar

Martínez-Barrera, G., Menchaca-Campos, C., Hernández-López, S., Vigueras-Santiago, E., Brostow, W., 2006. Concrete reinforced with irradiated nylon fibers, J. Mater. Res. 21, 484–491.10.1557/jmr.2006.0058 Search in Google Scholar

Martínez-Barrera, G., Ureña-Nuñez, F., Gencel, O., Brostow, W., 2011. Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation, Compos. A Appl. Sci. Manuf. 42, 567–572.10.1016/j.compositesa.2011.01.016 Search in Google Scholar

Nibudey, R., Nagarnaik, P., Parbat, D., Pande, A., 2013. Strength and fracture properties of post consumed waste plastic fiber reinforced concrete, International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development, (IJCSEIERD), 9–16. Search in Google Scholar

Naik, T. R., Singh, S. S., Huber, C. O., Brodersen, B.,S., 1996. Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res., 26, 1489–1492.10.1016/0008-8846(96)00135-4 Search in Google Scholar

Onuaguluchi, O., Panesar, D.K., 2014. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume, J. Clean. Prod. 82, 125–131.10.1016/j.jclepro.2014.06.068 Search in Google Scholar

Pietrzak A., 2019. The effect of adding slag, achieved from wastewater sludge incineration in fluided-bed furnace, on the quality of concrete. Quality Production Improvement, 1, 244-25010.2478/cqpi-2019-0033 Search in Google Scholar

Pietrzak, A., Ulewicz, M., 2021. Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats. Materials, 14, 87210.3390/ma14040872791859633670384 Search in Google Scholar

Ochi, T., Okubo, S., Fukui, K., 2007. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29, 448–455.10.1016/j.cemconcomp.2007.02.002 Search in Google Scholar

Pelisser, F., Montedo, O.R.K., Gleize, P.J.P., Roman, H.R., 2012. Mechanical properties of recycled PET fibers in concrete, Materials Research, 15, 679–686.10.1590/S1516-14392012005000088 Search in Google Scholar

Pietrzak, A., Ulewicz, M., 2019, The influence of addition of CRT Glass cullet on selected parameters of concrete composites. 2nd International Conference on the Sustainable Energy and Environmental Development IOP Conf. Series: Earth and Environmental Science, 214, Krakow10.1088/1755-1315/214/1/012006 Search in Google Scholar

Royer, B., R. M. N. de Assuncao, Oliveira J. S., Filho G. R., L. A. de Castro Motta, 2005. Synthesis, characterization and application of the sodium poly(styrenesulfonate) produced from waste polystyrene cups as an admixture in concrete, Journal of Applied Polymer Science, 96, 1534–1538.10.1002/app.21528 Search in Google Scholar

Sabaa, B., Ravindrarajah, R. S., 1997. Engineering properties of lightweight concrete containing crushed expanded polystyrene waste, In: Fall Meeting, Symposium MM, Advances in Materials for Cementitious Composites December 1997. Materials Research Society, 1–3. Search in Google Scholar

Saikia, N., Ferreira, L., de Brito, J., 2012. Influence of curing conditions on the mechanical performance of concrete containing recycled plastic aggregate. Construction and Building Materiasl, 36, 196–204.10.1016/j.conbuildmat.2012.02.098 Search in Google Scholar

Saikia, N., Silva, R., De Brito, J., 2013. Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates, Cement and Concrete Composites, 35, 23–31.10.1016/j.cemconcomp.2012.08.017 Search in Google Scholar

Saikia, N., de Brito, J., 2013. Waste polyethylene terephthalate as an aggregate in concrete. Materials Research, 16, 341–350.10.1590/S1516-14392013005000017 Search in Google Scholar

Song, P., Hwang, S., Sheu, B., 2005. Strength properties of nylon-and polypropylenefiber-reinforced concretes, Cem. Concr. Res. 35, 1546–1550.10.1016/j.cemconres.2004.06.033 Search in Google Scholar

Rahmani, E., Dehestani, M., Beygi, M. H. A., Allahyari, H., Nikbin, I. M., 2013. On the mechanical properties of concrete containing waste PET particles, Construction and Building Materiasl, 47, 1302-130810.1016/j.conbuildmat.2013.06.041 Search in Google Scholar

Ulewicz, M., Halbiniak, J., 2016. Application of waste from utilitarian ceramics for production of cement mortar and concrete. Physicochemical Problems of Mineral Processing, 52, 1002–1010. Search in Google Scholar

Wang, Y., Zureick, A.-H., Cho, B.S., Scott, D., 1994. Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. J. Mater. Sci., 29, 4191–4199.10.1007/BF00414198 Search in Google Scholar

Wang, Y., Wu, H., Li, V. C., 2000. Concrete reinforcement with recycled fibers, J. Mater. Civ. Eng., 12, 314–319.10.1061/(ASCE)0899-1561(2000)12:4(314) Search in Google Scholar

Walczak, P., Małolepszy, J., Reben, M., Rzepa, K., 2015. Mechanical properties of concrete mortar based on mixture of CRT glass cullet and fluidized fly ash. Procedia Engineering, 108, 453–458.10.1016/j.proeng.2015.06.170 Search in Google Scholar

Xu, Y., Jiang, L., Xu, J., Li, Y., 2012. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick, Construction and Building Materiasl, 27, 32–38.10.1016/j.conbuildmat.2011.08.030 Search in Google Scholar