1. bookVolume 27 (2019): Issue 1 (June 2019)
Journal Details
License
Format
Journal
eISSN
2336-1298
First Published
16 Jun 2010
Publication timeframe
2 times per year
Languages
English
access type Open Access

Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasi-constant curvature

Published Online: 04 Jul 2019
Volume & Issue: Volume 27 (2019) - Issue 1 (June 2019)
Page range: 1 - 12
Received: 26 Jul 2017
Accepted: 22 Mar 2019
Journal Details
License
Format
Journal
eISSN
2336-1298
First Published
16 Jun 2010
Publication timeframe
2 times per year
Languages
English
Abstract

We study lightlike hypersurfaces M of an indefinite Kaehler manifold of quasi-constant curvature subject to the condition that the characteristic vector field ζ of is tangent to M. First, we provide a new result for such a lightlike hypersurface. Next, we investigate such a lightlike hypersurface M of such that

(1) the screen distribution S(TM) is totally umbilical or

(2) M is screen conformal.

Keywords

MSC 2010

[1] C. Atindogbe, K.L. Duggal: Conformal screen on lightlike hypersurfaces. International J. of Pure and Applied Math. 11 (4) (2004) 421–442.Search in Google Scholar

[2] B.Y. Chen, K. Yano: Hypersurfaces of a conformally flat space. Tensor (NS) 26 (1972) 318–322.Search in Google Scholar

[3] K.L. Duggal, A. Bejancu: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Acad. Publishers, Dordrecht (1996).10.1007/978-94-017-2089-2Search in Google Scholar

[4] K.L. Duggal, D.H. Jin: A classification of Einstein lightlike hypersurfaces of a Lorentzian space form. J. Geom. Phys. 60 (2010) 1881–1889.Search in Google Scholar

[5] D.H. Jin: Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold. Indian J. of Pure and Applied Math. 41 (4) (2010) 569–581.Search in Google Scholar

[6] D.H. Jin: Lightlike real hypersurfaces with totally umbilical screen distributions. Commun. Korean Math. Soc. 25 (3) (2010) 443–450.Search in Google Scholar

[7] G. de Rham: Sur la réductibilité d’un espace de Riemannian. Comm. Math. Helv. 26 (1952) 328–344.10.1007/BF02564308Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo