Open Access

Global Existence of Weak Solutions for Compresssible Navier—Stokes—Fourier Equations with the Truncated Virial Pressure Law


Cite

D. Bresch, P.–E. Jabin. Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor. Ann. of Math. (2) 188, no. 2, 577–684 (2018).Search in Google Scholar

D. Bresch, P.–E. Jabin. Quantitative regularity estimates for compressible transport equations. New Trends and Results in Mathematical Description of Fluid Flows. Necas Center Series, 77-113. Eds M. Bulicek, E. Feireisl, M. Pokorny. Springer Nature Switzerland AG (2018).Search in Google Scholar

D. Bresch, P.–E. Jabin, F. Wang. The global existence of weak solutions for compressible Navier-Stokes equations with locally Lipschitz pressure depending on time and space variable. Nonlinearity 34(6), 4115-4162 (2021).Search in Google Scholar

R.J. DiPerna, P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 511–547, (1989).Search in Google Scholar

J.D. Dymond, R.C. Wilhoit. Virial coefficients of pure gases and mixtures, Springer (2003).Search in Google Scholar

E. Feireisl. On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolinae 42 (1) 83-98, (2001).Search in Google Scholar

E. Feireisl. Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.Search in Google Scholar

E. Feireisl, A. Novotný. Singular limits in thermodynamics of viscous fluids. Advanced in Math Fluid Mech, Birkhauser, 2017.Search in Google Scholar

E. Feireisl, A. Novotný, H. Petzeltová. On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 358-392, (2001).Search in Google Scholar

E. Feireisl, T. Karper, M. Pokorny. Mathematical Theory of Compressible Viscous Fluids: Analysis and Numerics. Birkhauser-Verlag, Basel, 2016.Search in Google Scholar

E. Feireisl. Compressible Navier–Stokes Equations with a Non-Monotone Pressure Law. J. Diff. Eqs 183, no 1, 97–108, (2002).Search in Google Scholar

O.A. Ladyzenskaya, V.A. Solonnikov, N.N. Uraltceva. Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society (1968).Search in Google Scholar

J. Leray. Sur le mouvement d’un fluide visqueux remplissant l’espace, Acta Math. 63, 193–248, (1934).Search in Google Scholar

P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.Search in Google Scholar

A. Novotny, I. Straskraba. Introduction to the mathematical theory of compressible flow. Oxford Lecture Series in Mathematics and its Applications. Oxford Science publications. The Clarendon press, Oxford University press, New York, 2004.Search in Google Scholar

H. Kamerlingh Onnes, Expression of state of gases and liquids by means of series, KNAW Proceedings, 4, 1901-1902, Amsterdam, 125-147 (1902).Search in Google Scholar

P.I. Plotnikov, W. Weigant. Isothermal Navier-Stokes equations and Radon transform. SIAM J. Math. Anal. 47 no. 1, 626–653, (2015). Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics