1. bookVolume 12 (2020): Issue 1 (July 2020)
Journal Details
License
Format
Journal
eISSN
2066-7760
First Published
30 May 2014
Publication timeframe
2 times per year
Languages
English
Open Access

Modeling reactive magnetron sputtering: a survey of different modeling approaches

Published Online: 16 Jul 2020
Volume & Issue: Volume 12 (2020) - Issue 1 (July 2020)
Page range: 112 - 136
Received: 03 May 2020
Accepted: 08 Jun 2020
Journal Details
License
Format
Journal
eISSN
2066-7760
First Published
30 May 2014
Publication timeframe
2 times per year
Languages
English

[1] T. Abe,T. Yamashina. The deposition rate of metallic thin films in the reactive sputtering process. Thin Solid Films, 30, 1 (1975) 19–27. ⇒12010.1016/0040-6090(75)90300-4Search in Google Scholar

[2] Z. Ahmad, B. Abdallah. Controllability analysis of reactive magnetron sputtering process. Acta Physica Polonica, A., 123, 1 2013. ⇒12710.12693/APhysPolA.123.3Search in Google Scholar

[3] S. Berg, H.-O. Blom, T. Larsson, C. Nender. Modeling of reactive sputtering of compound materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 5, 2 (1987) 202–207. ⇒120, 12410.1116/1.574104Search in Google Scholar

[4] S. Berg, C. Nender. Modeling of mass transport and gas kinetics of the reactive sputtering process. Le Journal de Physique IV, 5 (C5):C5–45, 1995. ⇒120, 12410.1051/jphyscol:1995502Search in Google Scholar

[5] S. Berg, T. Nyberg, H.-O. Blom, C. Nender. Computer modeling as a tool to predict deposition rate and film composition in the reactive sputtering process. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16, 3 (1998) 1277–1285. ⇒120 122, 123 12410.1116/1.581274Search in Google Scholar

[6] S. Berg, T. Nyberg. Fundamental understanding and modeling of reactive sputtering processes. Thin solid films, 476, 2 (2005) 215–230. ⇒11710.1016/j.tsf.2004.10.051Search in Google Scholar

[7] M.-M.-M. Bilek, D.-R. McKenzie. Predicting the structure of plasma deposited materials. Czechoslovak Journal of Physics52 (2002) 905–920. ⇒119Search in Google Scholar

[8] C.-K. Birdsall, A.-B. Langdon. Plasma Physics Via Computer Simulation, Bristol, UK. IOP Publishing, 1991. ⇒11610.1887/0750301171Search in Google Scholar

[9] A. Bogaerts, M. van Straaten, R. Gijbels. Monte Carlo simulation of an analytical glow discharge: motion of electrons, ions and fast neutrals in the cathode dark space. Spectrochimica Acta Part B: Atomic Spectroscopy, 50, 2 (1995) 179–196. ⇒115, 11610.1016/0584-8547(94)00117-ESearch in Google Scholar

[10] A. Bogaerts, R. Gijbels, W.-J. Goedheer. Hybrid Monte Carlo-fluid model of a direct current glow discharge. Journal of Applied Physics, 78, 4 (1995) 2233–2241. ⇒11610.1063/1.360139Search in Google Scholar

[11] A. Bogaerts, M. van Straaten, R. Gijbels. Description of the thermalization process of the sputtered atoms in a glow discharge using a three-dimensional Monte Carlo method. Journal of applied physics, 77, 5 (1995) 1868–1874. ⇒11610.1063/1.358887Search in Google Scholar

[12] A. Bogaerts, R. Gijbels, W.-J. Goedheer. Two-dimensional model of a direct current glow discharge: Description of the electrons, argon ions, and fast argon atoms. Analytical Chemistry, 68, 14 (1996) 2296–2303. ⇒11610.1021/ac9510651Search in Google Scholar

[13] A. Bogaerts, J. Naylor, M. Hatcher, W.-J. Jones, R. Mason. Influence of sticking coe cients on the behavior of sputtered atoms in an argon glow discharge: Modeling and comparison with experiment. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16, 4 (1998) 2400–2410. ⇒12310.1116/1.581359Search in Google Scholar

[14] J.-W. Bradley. The plasma properties adjacent to the target in a magnetron sputtering source. Plasma sources science and technology, 5, 4 (1996) 622. ⇒11610.1088/0963-0252/5/4/003Search in Google Scholar

[15] P. Carlsson, C. Nender, H. Barankova, S. Berg. Reactive sputtering using two reactive gases, experiments and computer modeling. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 11, 4 (1993) 1534–1539. ⇒122, 12510.1116/1.578501Search in Google Scholar

[16] J.-M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, J. Takadoum. Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process. Applied Surface Science, 253, 12 (2007) 5312–5316. ⇒128Search in Google Scholar

[17] D.-J. Christie, W.-D. Sproul, D. Carter. Mid-frequency dual magnetron reactive co-sputtering for deposition of customized index optical films. In Society of Vacuum Coaters 46 th Annual Technical Conference, 2003 pp. 393–398. ⇒125Search in Google Scholar

[18] D.-J. Christie. Power conversion and control for pulsed magnetron reactive sputtering. PhD thesis, Colorado State University, 2004. ⇒125Search in Google Scholar

[19] D.-J. Christie. Making magnetron sputtering work: Modelling reactive sputtering dynamics, part 1. SVC Bulletin, 2014. pp. 24–27. ⇒127Search in Google Scholar

[20] D.-J. Christie. Making magnetron sputtering work: Modelling reactive sputtering dynamics, part 2. SVC Bulletin, 2015, pp. 30–33. ⇒127Search in Google Scholar

[21] D.-J. Christie. Making magnetron sputtering work: Modelling reactive sputtering dynamics, part 3. SVC Bulletin, 2015, pp. 38–41. ⇒127Search in Google Scholar

[22] C. Costin, L. Marques, G. Popa, G. Gousset. Two-dimensional fluid approach to the dc magnetron discharge. Plasma Sources Science and Technology, 14, 1 (2005) 168. ⇒116Search in Google Scholar

[23] N.-F. Cramer. Analysis of a one-dimensional, steady-state magnetron discharge. Journal of Physics D: Applied Physics, 30, 18 (1997) 2573. ⇒11610.1088/0022-3727/30/18/012Search in Google Scholar

[24] D. Depla, J. Haemers, G. Buyle, R. De Gryse. Hysteresis behavior during reactive magnetron sputtering of Al2O3 using a rotating cylindrical magnetron. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 24, 4 (2006) 934–938. ⇒12710.1116/1.2198870Search in Google Scholar

[25] D. Depla, S. Heirwegh, S. Mahieu, R. De Gryse. Towards a more complete model for reactive magnetron sputtering. Journal of Physics D: Applied Physics, 40, 7 (2007) 1957. ⇒117Search in Google Scholar

[26] D. Depla, S. Mahieu, et al. Reactive Sputter Deposition, volume 109. Springer, 2008. ⇒116, 117, 12110.1007/978-3-540-76664-3Search in Google Scholar

[27] D. Depla, X.-Y. Li, S. Mahieu, K.-V. Aeken, W.-P. Leroy, J. Haemers, R. De Gryse, A. Bogaerts. Rotating cylindrical magnetron sputtering: Simulation of the reactive process. Journal of Applied Physics, 107, 11 (2010) 113307. ⇒117, 12710.1063/1.3415550Search in Google Scholar

[28] D. Depla, K. Strijckmans, A. Dulmaa, F. Cougnon, R. Dedoncker, R. Schelfhout, I. Schramm, F. Moens, R. De Gryse. Modeling reactive magnetron sputtering: Opportunities and challenges. Thin Solid Films, 2019. ⇒13110.1016/j.tsf.2019.05.045Search in Google Scholar

[29] J. Goree, T.-E. Sheridan. Magnetic field dependence of sputtering magnetron efficiency. Applied physics letters, 59, 9 (1991) 1052–1054. ⇒11610.1063/1.106342Search in Google Scholar

[30] T. Hammerschmidt, A. Kersch, P. Vogl. Embedded atom simulations of titanium systems with grain boundaries. Physical Review B, 71, 20 (2005) 205409. ⇒11810.1103/PhysRevB.71.205409Search in Google Scholar

[31] J. Heller. Reactive sputtering of metals in oxidizing atmospheres. Thin Solid Films, 17, 2 (1973) 163–176. ⇒12010.1016/0040-6090(73)90125-9Search in Google Scholar

[32] M.-A. Karolewski. Kalypso: a software package for molecular dynamics simulation of atomic collisions at surfaces. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 230, 1-4 (2005) 402–405. ⇒11710.1016/j.nimb.2004.12.074Search in Google Scholar

[33] A. Kelemen, D. Biró, A.-Zs. Fekete, L. Jakab-Farkas, R.-R. Madarász. Macroscopic thin film deposition model for the two-reactive-gas sputtering process. Acta Universitatis Sapientiae Electrical and Mechanical Engineering, 8 (2016) 62–78. ⇒125, 12710.1515/auseme-2017-0005Search in Google Scholar

[34] S. Kikkawa, M. Fujiki, M. Takahashi, and F. Kanamaru. Reactive co-sputter deposition and succesive annealing of fe-al-n thin film. Journal of the Japan Society of Powder and Powder Metallurgy, 44, 7 (1997) 674–677. ⇒12510.2497/jjspm.44.674Search in Google Scholar

[35] R.-L. Kinder, M.-J. Kushner. Wave propagation and power deposition in magnetically enhanced inductively coupled and helicon plasma sources. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19, 1 (2001) 76–86. ⇒11610.1116/1.1329122Search in Google Scholar

[36] T. Kubart, O. Kappertz, T. Nyberg, S. Berg. Dynamic behaviour of the reactive sputtering process. Thin Solid Films, 515, 2 (2006) 421–424. ⇒11710.1016/j.tsf.2005.12.250Search in Google Scholar

[37] W.-P. Leroy, S. Mahieu, R. Persoons, D. Depla. Method to determine the sticking coe cient of o2 on deposited al during reactive magnetron sputtering, using mass spectrometry. Plasma Processes and Polymers, 51, 6 (2009) S342–S346. ⇒12410.1002/ppap.200932401Search in Google Scholar

[38] W.-P. Leroy, S. Mahieu, R. Persoons, D. Depla. Quantification of the incorporation coe cient of a reactive gas on a metallic film during magnetron sputtering: The method and results. Thin Solid Films, 518, 5 (2009) 1527–1531. ⇒12410.1016/j.tsf.2009.07.190Search in Google Scholar

[39] W.-P. Leroy, S. Mahieu, D. Depla, A.-P. Ehiasarian. High power impulse magnetron sputtering using a rotating cylindrical magnetron. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 28, 1 (2010) 108–111. ⇒12710.1116/1.3271136Search in Google Scholar

[40] R.-R. Madarász and A. Kelemen. Stoichiometry control of the two gas reactive sputtering process. In 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and 7th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-MACRo), pp. 000217–000222. IEEE, 2019. ⇒128, 129, 13010.1109/CINTI-MACRo49179.2019.9105135Search in Google Scholar

[41] N. Martin, R. Sanjines, J. Takadoum, F. Lévy. Enhanced sputtering of titanium oxide, nitride and oxynitride thin films by the reactive gas pulsing technique. Surface and Coatings Technology, 142 (2001) 615–620. ⇒12810.1016/S0257-8972(01)01149-5Search in Google Scholar

[42] H.-E. McKelvey. Rotatable sputtering apparatus, May 1 1984. US Patent 4,445,997. ⇒127Search in Google Scholar

[43] C. Misiano and E. Simonetti. 4.4 co-sputtered optical films. Vacuum, 27, 4 (1977) 403–406. ⇒12510.1016/0042-207X(77)90031-8Search in Google Scholar

[44] W. Möller, W. Eckstein, J.-P. Biersack. Tridyn-binary collision simulation of atomic collisions and dynamic composition changes in solids. Computer Physics Communications, 51, 3 (1988) 355–368. ⇒11710.1016/0010-4655(88)90148-8Search in Google Scholar

[45] W. Möller, M. Posselt. TRIDYN FZR User Manual. FZR Dresden, 2001. ⇒117Search in Google Scholar

[46] M. Moradi, C. Nender, S. Berg, H.-O. Blom, A. Belkind, Z. Orban. Modeling of multicomponent reactive sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9, 3 (1991) 619–624. ⇒12510.1116/1.577376Search in Google Scholar

[47] E. Penilla, J. Wang. Pressure and temperature effects on stoichiometry and microstructure of nitrogen-rich tin thin films synthesized via reactive magnetron dc-sputtering. Journal of Nanomaterials, 2008. ⇒11810.1155/2008/267161Search in Google Scholar

[48] L.-M. Popescu. A computer code package for Monte Carlo photon-electron transport simulation: Comparisons with experimental benchmarks. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 161 (2000) 318–322. ⇒11710.1016/S0168-583X(99)00984-2Search in Google Scholar

[49] I.-A. Porokhova, Y.-B. Golubovskii, J. Bretagne, M. Tichy, J.-F. Behnke. Kinetic simulation model of magnetron discharges. Physical Review E, 63, 5 (2001) 056408. ⇒116Search in Google Scholar

[50] I.A. Porokhova, Y.-B. Golubovskii, J.-F. Behnke. Anisotropy of the electron component in a cylindrical magnetron discharge. i. theory of the multiterm analysis. Physical Review E, 71, 6 (2005) 066406. ⇒116Search in Google Scholar

[51] I.-A. Porokhova, Y.-B. Golubovskii, J.-F. Behnke. Anisotropy of the electron component in a cylindrical magnetron discharge. ii. application to real magnetron discharge. Physical review E, 71, 6 (2005) 066407. ⇒11610.1103/PhysRevE.71.06640716089880Search in Google Scholar

[52] R.-K. Porteous, D.-B. Graves. Modeling and simulation of magnetically confined low-pressure plasmas in two dimensions. IEEE transactions on plasma science, 19, 2 (1991) 204–213. ⇒11610.1109/27.106815Search in Google Scholar

[53] T.-E. Sheridan, M.-J. Goeckner, J. Goree. Model of energetic electron transport in magnetron discharges. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8, 1 (1990) 30–37. ⇒11610.1116/1.577093Search in Google Scholar

[54] F. Shinoki, A. Itoh. Mechanism of rf reactive sputtering. Journal of Applied Physics, 46, 8 (1975) 3381–3384. ⇒12010.1063/1.322242Search in Google Scholar

[55] W.-D. Sproul, D.-J. Christie, D.-C. Carter. Control of reactive sputtering processes. Thin solid films, 491, 1-2 (2005) 1–17. ⇒12510.1016/j.tsf.2005.05.022Search in Google Scholar

[56] K. Strijckmans, W.-P. Leroy, R. De Gryse, D. Depla. Modeling reactive magnetron sputtering: Fixing the parameter set. Surface and Coatings Technology, 206, 17 (2012) 3666–3675. ⇒117, 12410.1016/j.surfcoat.2012.03.019Search in Google Scholar

[57] K. Strijckmans and D. Depla. A time-dependent model for reactive sputter deposition. Journal of Physics D: Applied Physics, 37, 23 (2014) 235302. ⇒117, 127Search in Google Scholar

[58] K. Strijckmans. Modeling the reactive magnetron sputtering process. PhD Thesis, Ghent University, 2015. ⇒114, 123, 125, 126Search in Google Scholar

[59] R. Terry, K. Gibbons, S. Zarrabian. Method and apparatus for reactive sputtering employing two control loops, August 22 2000. US Patent 6,106,676. ⇒127Search in Google Scholar

[60] A.-E. Wendt, M.-A. Lieberman, H. Meuth. Radial current distribution at a plan ar magnetron cathode. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 6, 3 (1988) 1827–1831. ⇒11610.1116/1.575263Search in Google Scholar

[61] A.-E. Wendt, M.-A. Lieberman. Spatial structure of a planar magnetron discharge. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8, 2 (1990) 902–907. ⇒11610.1116/1.576894Search in Google Scholar

[62] C. Woelfel, P. Awakowicz, J. Lunze. Model reduction and identification of nonlinear reactive sputter processes. IFAC-PapersOnLine, 50, 1 (2017) 13728–13734. ⇒115, 127, 128, 12910.1016/j.ifacol.2017.08.2553Search in Google Scholar

[63] C. Woelfel, P. Awakowicz, J. Lunze. Robust high-gain control of nonlinear reactive sputter processes. In 2017 IEEE Conference on Control Technology and Applications (CCTA), IEEE, 2017, pp 25–30. ⇒12810.1109/CCTA.2017.8062435Search in Google Scholar

[64] C. Woelfel, P. Awakowicz, J. Lunze. Tuning rule for linear control of nonlinear reactive sputter processes. In 2017 21st International Conference on Process Control (PC), IEEE, 2017, pp. 109–114. ⇒12810.1109/PC.2017.7976198Search in Google Scholar

[65] C. Woelfel, S. Kockmann, P. Awakowicz, J. Lunze. Model identification of nonlinear sputter processes. In 2017 17th International Conference on Control, Automation and Systems (ICCAS), IEEE, 2017, pp. 182–187. ⇒12810.23919/ICCAS.2017.8204438Search in Google Scholar

[66] C. Woelfel, S. Kockmann, P. Awakowicz, J. Lunze. Neural network based linearization and control of sputter processes. In 2017 11th Asian Control Conference (ASCC), IEEE, 2017, pp. 2831–2836. ⇒12810.1109/ASCC.2017.8287626Search in Google Scholar

[67] C. Woelfel, D. Bockhorn, P. Awakowicz, J. Lunze. Model approximation and stabilization of reactive sputter processes. Journal of Process Control, 2018. ⇒128, 13110.1016/j.jprocont.2018.06.009Search in Google Scholar

[68] Y. Yamamura and M. Ishida. Monte Carlo simulation of the thermalization of sputtered atoms and reflected atoms in the magnetron sputtering discharge. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13, 1 (1995) 101–112. ⇒11710.1116/1.579874Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo