1. bookVolume 26 (2018): Issue 3 (December 2018)
Journal Details
License
Format
Journal
eISSN
1844-0835
First Published
17 May 2013
Publication timeframe
1 time per year
Languages
English
access type Open Access

Division hypernear-rings

Published Online: 31 Dec 2018
Volume & Issue: Volume 26 (2018) - Issue 3 (December 2018)
Page range: 109 - 126
Received: 14 Nov 2017
Accepted: 31 Jan 2018
Journal Details
License
Format
Journal
eISSN
1844-0835
First Published
17 May 2013
Publication timeframe
1 time per year
Languages
English
Abstract

This paper is a continuation of our work on hypernear-rings with a defect of distributivity D. In particular, here we introduce and study a new subclass of hypernear-rings, called D-division hypernear-rings, establishing a necessary and sufficient condition such that a hypernear-ring with the defect D is a D-division hypernear-ring. Several properties and examples of these two subclasses of hypernear-rings are presented and discussed.

Keywords

MSC 2010

[1] P. Bonansinga, Sugli ipergruppi quasicanonici, Atti Soc. Peloritana Sci. Fis. Mat. Natur., 27(1981), 9-17.Search in Google Scholar

[2] S.D. Comer, Polygroups derived from cogroups, J. Algebra, 89(2) (1984), 397-405.10.1016/0021-8693(84)90225-4Search in Google Scholar

[3] P. Corsini, Feebly canonical and 1-hypergroups, Acta Univ. Carolin. Math. Phys., 24(1983), 49-56.Search in Google Scholar

[4] I. Cristea, S. Jančić-Rašović, Composition hyperrings, An. Univ. “Ovid-ius” Constanta, Seria Mat., 21(2) (2013), 81-94.10.2478/auom-2013-0024Search in Google Scholar

[5] V. Dašić, A defect of distributivity of the near-rings, Math. Balkanica 8 (1978), 63-75.Search in Google Scholar

[6] V. Dašić, Some properties of D-distributive near-rings, Glas. Mat. Ser. III 18(38) (1983), no. 2, 237-242.Search in Google Scholar

[7] V. Dašić, Hypernear-rings, Algebraic hyperstructures and applications (Xanthi, 1990), 75-85, World Sci. Publ., Teaneck, NJ, 1991.Search in Google Scholar

[8] B. Davvaz, Polygroup theory and related systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.10.1142/8593Search in Google Scholar

[9] L. Dickson, Definitions of a group and a field by independent postulates, Trans. Amer. Math. Soc. 6 (1905), 198-204.10.1090/S0002-9947-1905-1500706-2Search in Google Scholar

[10] A. Frohlich, Distributively generated near-rings (I. Ideal Theory), Proc. London Math. Soc. (3) 8 (1958), 76-94.10.1112/plms/s3-8.1.76Search in Google Scholar

[11] M. Gontineac, On hypernear-rings and H-hypergroups, Algebraic hyper-structures and applications (Iaşi, 1993), 171-179, Hadronic Press, Palm Harbor, FL, 1994.Search in Google Scholar

[12] S. Jančić-Rašović, On a class of Chinese hyperrings, Italian J. Pure Appl. Math., 28(2011), 243-254.Search in Google Scholar

[13] S. Jančić-Rašović, On hyperrings associated with binary relations on semihypergroups, Italian J. Pure Appl. Math., 30(2013), 279-288.Search in Google Scholar

[14] S. Jančić-Rašović, I. Cristea, Hypernear-rings with a defect of distributivity, Filomat, 2017, accepted.10.1063/1.5043950Search in Google Scholar

[15] S. Jančić-Rašović, I. Cristea, A note on near-rings and hypernear-rings with a defect of distributivity, AIP Conference Proceedings, 2017, accepted.10.1063/1.5043950Search in Google Scholar

[16] S. Jančić-Rašović, V. Dašić, Some new classes of (m, n)-hyperrings, Filomat, 26(3) (2012), 585-596.10.2298/FIL1203585JSearch in Google Scholar

[17] M. Krasner, Approximations des corps values complets de caracteristique p ≠ 0 par ceux de caracteristique 0, Coll. Alg. Sup. (Bruxelles, Decembres 1956), CBRM, Bruxelles, 1957.Search in Google Scholar

[18] S. Ligh, On distributively generated near-rings, Proc. Edinburg Math. Soc. 16, Issue 3 (1969), 239-242.Search in Google Scholar

[19] S. Ligh, On division near-rings, Canadian J. Math., 21(1969), 1366-1371.10.4153/CJM-1969-151-5Search in Google Scholar

[20] Ch.G. Massouros, Quasicanonical hypergroups, Algebraic hyperstructures and applications (Xanthi, 1990), 129-136, World Sci. Publ., Tea-neck, NJ, 1991.Search in Google Scholar

[21] Ch.G. Massouros, Methods of constructing hyperfields, Internat. J. Math. Math. Sci., 8(1985), no.4, 725-728.Search in Google Scholar

[22] J. Mittas, Hypergroupes canoniques, Math. Balkanica 2 (1972), 165-179.Search in Google Scholar

[23] J. Mittas, Sur certaines classes de structures hypercompositionelles, Proc. Acad. Athens, 48(1973), 298-318.Search in Google Scholar

[24] A. Nakasis, Recent results in hyperring and hyperfield theory, Internat. J. Math. Math. Sci., 11(2) (1988), 209-220.10.1155/S0161171288000250Search in Google Scholar

[25] B.H. Neumann, On the commutativity of addition, J. London Math. Soc., 15(1940), 203-208.10.1112/jlms/s1-15.3.203Search in Google Scholar

[26] G. Pilz, Near-rings, North-Holland Publ.Co., rev.ed. 1983.Search in Google Scholar

[27] R. Rota, Multiplicative hyperrings, (Italian), Rend. Mat. (7) 2(1982), no.4, 711-724.Search in Google Scholar

[28] R.L. Roth, Character and conjugacy class hypergroups of a finite group, Ann. Math. Pura Appl., 105(1975), 295-311.10.1007/BF02414935Search in Google Scholar

[29] Th. Vougiouklis, On some representations of hypergroups, Annales scientifiques de l’Université de Clermont-Ferrand 2, tome 95, série Mathematiques, 26(1990), 21-29.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo