Cite

1. Abdou A.M., Higashiguchi S., Horie K., Kim M., Hatta H. & Yokogoshi H. (2006). Relaxation and immunity enhancement effects of γ-Aminobutyric acid (GABA) administration in humans. Biofactors, 26(3), 201-208. DOI: 10.1002/biof.5520260305.10.1002/biof.552026030516971751 Search in Google Scholar

2. Aguilar C., Toro Mújica P., Vargas Bello E., Vera R.R., Ugalde C., Rodríguez S., Briones I. (2014). A comparative study of the fatty acid profiles in commercial sheep cheeses. Grasas y aceites, 65(4). DOI: 10.3989/gya.0460141.10.3989/gya.0460141 Search in Google Scholar

3. Alhaj O.A. & Kanekanian A. (2014). Milk-derived bioactive components from fermentation. Milk and Dairy Products as Functional Foods, 237-288. DOI: 10.1002/9781118635056.ch8.10.1002/9781118635056.ch8 Search in Google Scholar

4. Atasoy A.F., Hayaloglu A.A., Kırmacı H., Levent O. & Türkoğlu H. (2013). Effects of partial substitution of caprine for ovine milk on the volatile compounds of fresh and mature Urfa cheeses. Small Ruminant Research, 115(1-3), 113-123. DOI: 10.1016/j.smallrumres.2013.09.002.10.1016/j.smallrumres.2013.09.002 Search in Google Scholar

5. Balthazar C.F., Pimentel T.C., Ferrão L.L., Almada C.N., Santillo A., Albenzio M., Mollakhalili N., Mortazavian A.M., Nascimento J.S., Silva M.C., Freitas M.Q., Sant’Ana A.S., Granato D. & Cruz A.G. (2017). Sheep milk: Physicochemical characteristics and relevance for functional food development. Comprehensive Reviews in Food Science and Food Safety, 16(2), 247-262. DOI: 10.1111/1541-4337.12250.10.1111/1541-4337.1225033371538 Search in Google Scholar

6. Banni S., Angioni E., Murru E., Carta G., Paola Melis, M., Bauman, D., Dong Y. & Ip C. (2001). Vaccenic acid feeding increases tissue levels of conjugated linoleic acid and suppresses development of premalignant lesions in rat mammary gland. Nutrition and cancer, 41(1-2), 91-97. DOI: : 10.1080/01635581.2001.9680617.10.1080/01635581.2001.968061712094634 Search in Google Scholar

7. Barać M., Pešić M., Vučić T., Vasić M. & Smiljanić M. (2017). White cheeses as a potential source of bioactive peptides. Mljekarstvo, 67(1), 3-16. DOI: 10.15567/mljekarstvo.2017.0101.10.15567/mljekarstvo.2017.0101 Search in Google Scholar

8. Barron L.J.R., Redondo Y., Flanagan C.E., Pérez-Elortondo F.J., Albisu M., Nájera A.I., de Renobales M. & Fernández-García E. (2005). Comparison of the volatile composition and sensory characteristics of Spanish PDO cheeses manufactured from ewes’ raw milk and animal rennet. International Dairy Journal, 15(4), 371-382. DOI: 10.1016/j.idairyj.2004.08.005.10.1016/j.idairyj.2004.08.005 Search in Google Scholar

9. Barron, L. J. R., Redondo, Y., Aramburu, M., Gil, P., Pérez-Elortondo, F. J., Albisu, M., Nájera A.I., de Renobales M. & Fernández-García E. (2007). Volatile composition and sensory properties of industrially produced Idiazabal cheese. International Dairy Journal, 17(12), 1401-1414. DOI: 10.1016/j.idairyj.2007.04.001.10.1016/j.idairyj.2007.04.001 Search in Google Scholar

10. Bassett C.M., Edel A.L., Patenaude A.F., McCullough R.S., Blackwood D.P., Chouinard P.Y., Paquin P., Lamarche B. & Pierce, G.N. (2010). Dietary vaccenic acid has antiatherogenic effects in LDLr−/− mice. The Journal of nutrition, 140(1), 18-24. DOI: 10.3945/jn.109.105163.10.3945/jn.109.10516319923390 Search in Google Scholar

11. Benkerroum N. (2010). Antimicrobial peptides generated from milk proteins: a survey and prospects for application in the food industry. A review. International Journal of Dairy Technology, 63(3), 320-338. DOI: 10.1111/j.1471-0307.2010.00584.x.10.1111/j.1471-0307.2010.00584.x Search in Google Scholar

12. Bielińska-Nowak S. & Czyżak-Runowska G. (2016). Jakość higieniczna, wydajność i podstawowy skład mleka owczego w zależności od fazy laktacji. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego, 12(1), 9-15.10.5604/01.3001.0013.6976 Search in Google Scholar

13. Biesalski H.K., Dragsted L.O., Elmadfa I., Grossklaus R., Müller M., Schrenk D., Walter P. & Weber P. (2009). Bioactive compounds: Definition and assessment of activity. Nutrition, 25(11-12), 1202-1205. DOI: 10.1016/j.nut.2009.04.023.10.1016/j.nut.2009.04.02319695833 Search in Google Scholar

14. Bodkowski R., Patkowska-Sokoła B., Nowakowski P., Jamroz D. & Janczak M. (2011). Produkty pochodzące od przeżuwaczy – najważniejsze źródło L-karnityny w diecie człowieka. Przegląd Hodowlany, 10, 22-25. Search in Google Scholar

15. Bonczar G., Filipczak-Fiutak M., Pluta-Kubica A. & Duda I. (2017). Aminy biogenne w serach – występowanie i zagrożenia. Medycyna Weterynaryjna, 73(3), 136-143.10.21521/mw.5657 Search in Google Scholar

16. Bonczar G., Regula-Sardat A., Pustkowiak H. & Zebrowska A. (2009). Wpływ substytucji mleka owczego mlekiem krowim na właściwości bundzu. Żywność Nauka Technologia Jakość, 5(66), 96-106. Search in Google Scholar

17. Borys M., Pakulski T., Borys B., Pakulska E. & Węgrzyn E. (2006). The content and retention of some major and trace minerals in sheep’s milk and cheese. Archiv fur Tierzucht, 49, 263-267. Search in Google Scholar

18. Buňková L., Adamcová G., Hudcová K., Velichová H., Pachlová V., Lorencová E. & Buňka F. (2013). Monitoring of biogenic amines in cheeses manufactured at small-scale farms and in fermented dairy products in the Czech Republic. Food Chemistry, 141(1), 548-551. DOI: 10.1016/j.foodchem.2013.03.036.10.1016/j.foodchem.2013.03.03623768392 Search in Google Scholar

19. Calzada J., Del Olmo A., Picon A., Gaya P. & Nuñez M. (2013). Proteolysis and biogenic amine buildup in high-pressure treated ovine milk blue-veined cheese. Journal of dairy science, 96(8), 4816-4829. DOI: 10.3168/jds.2012-6409.10.3168/jds.2012-640923706489 Search in Google Scholar

20. Carafa I., Stocco G., Nardin T., Larcher R., Bittante G., Tuohy K. & Franciosi E. (2019). Production of naturally γ-aminobutyric acid-enriched cheese using the dairy strains Streptococcus thermophilus 84C and Lactobacillus brevis DSM 32386. Frontiers in microbiology, 10, 93. DOI: 10.3389/fmicb.2019.00093.10.3389/fmicb.2019.00093638107030814980 Search in Google Scholar

21. Chia J., Burrow K., Carne A., McConnell M., Samuelsson L., Day L., Young W. & Bekhit A.E.D.A. (2017). Minerals in sheep milk. In R. Watson, R.J. Collier & V. Preedy (Eds.), Nutrients in Dairy and their Implications on Health and Disease. (pp. 345-362). Academic Press.10.1016/B978-0-12-809762-5.00027-9 Search in Google Scholar

22. Cichosz G. & Czeczot H. (2012a). Kwasy tłuszczowe izomerii trans w diecie człowieka. Bromatologia i Chemia Toksykologiczna, 45(2), 181-190. Search in Google Scholar

23. Cichosz G. & Czeczot H. (2012b). Tłuszcz mlekowy w profilaktyce chorób nowotworowych. Polski Merkuriusz Lekarski, 33(195), 168-172. Search in Google Scholar

24. Combarros-Fuertes P., Fernández D., Arenas R., Diezhandino I., Tornadijo M.E. & Fresno J.M. (2015). Biogenic amines in Zamorano cheese: factors involved in their accumulation. Journal of the Science of Food and Agriculture, 96(1), 295–305. DOI:10.1002/jsfa.7093.10.1002/jsfa.709325641417 Search in Google Scholar

25. Cornu A., Kondjoyan N., Martin B., Verdier-Metz I., Pradel P., Berdagué J.L. & Coulon J.B. (2005). Terpene profiles in Cantal and Saint-Nectaire-type cheese made from raw or pasteurised milk. Journal of the Science of Food and Agriculture, 85(12), 2040-2046. DOI: 10.1002/jsfa.2214.10.1002/jsfa.2214 Search in Google Scholar

26. Costa J.B., de Paula N.T., da Silva P.A., de Souza G.C., Paim A.P.S. & Lavorante A.F. (2019). A spectrophotometric procedure for sialic acid determination in milk employing a flow-batch analysis system with direct heating. Microchemical Journal, 147, 782-788. DOI: 10.1016/j.microc.2019.03.086.10.1016/j.microc.2019.03.086 Search in Google Scholar

27. Creasy W.A., Hankin L. & Handschumaoher R. (1961). Fatty livers induced by orotic acid. 1. Accumulation and metabolism of lipids. Journal of Biological Chemistry, 236, 2064-2070.10.1016/S0021-9258(18)64130-4 Search in Google Scholar

28. Cruz A.G., Faria J.A., Pollonio M.A., Bolini H.M., Celeghini R.M., Granato D. & Shah N.P. (2011). Cheeses with reduced sodium content: Effects on functionality, public health benefits and sensory properties. Trends in Food Science & Technology, 22(6), 276-291. DOI: 10.1016/j.tifs.2011.02.003.10.1016/j.tifs.2011.02.003 Search in Google Scholar

29. Curioni P.M.G. & Bosset J.O. (2002). Key odorants in various cheese types as determined by gas chromatography-olfactometry. International Dairy Journal, 12(12), 959-984. DOI: 10.1016/S0958-6946(02)00124-3.10.1016/S0958-6946(02)00124-3 Search in Google Scholar

30. Darewicz M., Borawska J., Minkiewicz P., Iwaniak A. & Starowicz P. (2015). Biologicznie aktywne peptydy uwalniane z białek żywności. Żywność Nauka Technologia Jakość, 3(100), 26-41. Search in Google Scholar

31. Demarquoy J., Georges B., Rigault C., Royer M.C., Clairet A., Soty M., Lekounoungou S. & Le Borgne F. (2004). Radioisotopic determination of L-carnitine content in foods commonly eaten in Western countries. Food Chemistry, 86(1), 137-142. DOI: 10.1016/j.foodchem.2003.09.023.10.1016/j.foodchem.2003.09.023 Search in Google Scholar

32. Diana M., Rafecas M., Arco C. & Quilez J. (2014). Free amino acid profile of Spanish artisanal cheeses: Importance of gamma-aminobutyric acid (GABA) and ornithine content. Journal of Food Composition and Analysis, 35, 94-100. DOI: 10.1016/j.jfca.2014.06.007.10.1016/j.jfca.2014.06.007 Search in Google Scholar

33. EFSA Panel on Biological Hazards (BIOHAZ) (2011). Scientific opinion on risk based control of biogenic amine formation in fermented foods. Efsa Journal, 9(10), 2393.10.2903/j.efsa.2011.2393 Search in Google Scholar

34. Ercan S.S., Bozkurt H. & Soysal Ç. (2013). Significance of biogenic amines in foods and their reduction methods. Journal of Food Science and Engineering, 3(8). Search in Google Scholar

35. Estrada O., Ariño A. & Juan T. (2019). Salt distribution in raw sheep milk cheese during ripening and the effect on proteolysis and lipolysis. Foods, 8(3), 100. DOI: 10.3390/foods8030100/. Search in Google Scholar

36. European Commission (2012). Survey on Members States’ implementation of the EU salt reduction framework. Search in Google Scholar

37. FAOSTAT. (2021). Livestock Primary and Livestock Processed stats. Retrieved February 20, 2021, from: http://www.fao.org/faostat/en/#data/QL and Supply Utilization Accounts. Retrieved November 14, 2021, from: https://www.fao.org/faostat/en/#data/SCL Search in Google Scholar

38. Favaro G., Magno F., Boaretto A., Bailoni L. & Mantovani R. (2005). Traceability of Asiago mountain cheese: a rapid, low-cost analytical procedure for its identification based on solid-phase microextraction. Journal of dairy science, 88(10), 3426-3434. DOI: 10.3168/jds.S0022-0302(05)73026-5.10.3168/jds.S0022-0302(05)73026-5 Search in Google Scholar

39. Fernández D., Arenas R., Gonzalo C., Barbosa E. & Prieto B. (2015). Variation of Fatty Acid Content in Zamorano-Type Ovine Cheese According to the Milk Conjugated Linoleic Acid Content. Advances in Dairy Research, 3(147). DOI: 10.4172/2329-888X.10001. Search in Google Scholar

40. Gaglio R., Todaro M., Scatassa M.L., Franciosi E., Corona O., Mancuso I., Di Gerlando R., Cardamone C. & Settanni L. (2019). Transformation of raw ewes’ milk applying “Grana” type pressed cheese technology: Development of extra-hard “Gran Ovino” cheese. International Journal of Food Microbiology, 307, 108277. DOI: 10.1016/j.ijfoodmicro.2019.108277.10.1016/j.ijfoodmicro.2019.10827731404779 Search in Google Scholar

41. Gajos E. & Krezlewicz H. (1974). Estimation of orotic acid in milk and milk products. Przeglad Mleczarski, 23 (Suppl. 1), 7-9. Search in Google Scholar

42. Goa K.L. & Brogden R.N. (1987). l-Carnitine. Drugs 34, 1-24. DOI: 10.2165/00003495-198734010-00001.10.2165/00003495-198734010-000013308409 Search in Google Scholar

43. Gómez-Ruiz J.Á., Ramos M. & Recio I. (2002). Angiotensin-converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures. International Dairy Journal, 12(8), 697-706. DOI: 10.1016/s0958-6946(02)0005. Search in Google Scholar

44. Gómez-Ruiz J.Á., Taborda G., Amigo L., Recio I. & Ramos M. (2006). Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry. European Food Research and Technology, 223(5), 595-601. DOI: 10.1007/s00217-005-0238-0.10.1007/s00217-005-0238-0 Search in Google Scholar

45. González-Martín I., Hernández-Hierro J.M., Revilla I., Vivar-Quintana A. & Ortega I.L. (2011). The mineral composition (Ca, P, Mg, K, Na) in cheeses (cow’s, ewe’s and goat’s) with different ripening times using near infrared spectroscopy with a fibre-optic probe. Food chemistry, 127(1), 147-152. DOI: 10.1016/j.foodchem.2010.12.114.10.1016/j.foodchem.2010.12.114 Search in Google Scholar

46. Govari M., Iliadis S., Papageorgiou D. & Fletouris D. (2020). Seasonal changes in fatty acid and conjugated linoleic acid contents of ovine milk and kefalotyri cheese during ripening. International Dairy Journal, 109, 104775. DOI: 10.1016/j.idairyj.2020.104775.10.1016/j.idairyj.2020.104775 Search in Google Scholar

47. Gutiérrez-Peña R., Avilés C., Galán-Soldevilla H., Polvillo O., Ruiz Pérez-Cacho P., Guzmán J.L., Horcada A. & Delgado-Pertíñez M. (2021) Physicochemical Composition, Antioxidant Status, Fatty Acid Profile, and Volatile Compounds of Milk and Fresh and Ripened Ewes’ Cheese from a Sustainable Part-Time Grazing System. Foods, 10, 80. DOI: 10.3390/foods10010080.10.3390/foods10010080 Search in Google Scholar

48. Horne J., Carpino S., Tuminello L., Rapisarda T., Corallo L. & Licitra G. (2005). Differences in volatiles, and chemical, microbial and sensory characteristics between artisanal and industrial Piacentinu Ennese cheeses. International Dairy Journal, 15(6-9), 605-617. DOI: 10.1016/j.idairyj.2004.10.007.10.1016/j.idairyj.2004.10.007 Search in Google Scholar

49. Inoue K., Shirai T., Ochiai H., Kasao M., Hayakawa K., Kimura M. & Sansawa H. (2003). Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. European Journal of Clinical Nutrition, 57(3), 490-495. DOI: 10.1038/sj.ejcn.1601555.10.1038/sj.ejcn.1601555 Search in Google Scholar

50. Irigoyen A., Ortigosa M., Juansaras I., Oneca M. & Torre P. (2007). Influence of an adjunct culture of Lactobacillus on the free amino acids and volatile compounds in a Roncal-type ewe’s-milk cheese. Food Chemistry, 100(1), 71-80. DOI: 10.1016/j.foodchem.2005.09.011.10.1016/j.foodchem.2005.09.011 Search in Google Scholar

51. Jacome-Sosa M.M., Borthwick F., Mangat R., Uwiera R., Reaney M.J., Shen J., Quiroga A.D., Jacobs R.L., Lehner R. & Proctor S.D. (2014). Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome. The Journal of nutritional biochemistry, 25(7), 692-701. DOI: 10.1016/j.jnutbio.2014.02.011.10.1016/j.jnutbio.2014.02.011 Search in Google Scholar

52. Janczy A. (2012). Sprzężony kwas linolowy cis-9, trans-11 CLA a zmiany miażdżycowe. Zeszyty Naukowe Akademii Morskiej w Gdyni, (73), 5-15. Search in Google Scholar

53. Jansen S.C., van Dusseldorp M., Bottema K.C. & Dubois A.E. (2003). Intolerance to dietary biogenic amines: a review. Annals of Allergy, Asthma & Immunology, 91(3), 233-241. DOI: 10.1016/S1081-1206(10)63523-5.10.1016/S1081-1206(10)63523-5 Search in Google Scholar

54. Jarzynowska A. & Kłopotek, E. (2013). Characteristics of chemical composition and lipid fraction of semi-hard ripening cheese produced from sheep and sheep-cow milk during summer season. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego, 9(4), 39-52. Search in Google Scholar

55. Kajimoto O., Hirata H., Nakagawa S., Kajimoto Y., Hayakawa K. & Kimura, M. (2004). Hypotensive effect of fermented milk containing gamma-aminobutyric acid (GABA) in subjects with high normal blood pressure. Nippon Shokuhin Kagaku Kogaku kaishi, 51(2),79-86. DOI: 10.3136/nskkk.51.79.10.3136/nskkk.51.79 Search in Google Scholar

56. Karunanithi D., Radhakrishna A. & Biju V.M. (2013). Quantitative determination of sialic acid in indian milk and milk products. International Journal of Applied Biotechnology and Pharmaceutical Technology, 4(1), 318-323. Search in Google Scholar

57. Kawęcka A. & Sosin-Bzducha E. (2014). Seasonal changes of the chemical composition of cheese obtained from the milk of indigenous Polish breeds of sheep. Journal of Animal and Feed Sciences, 23(2), 131-138. DOI: 10.22358/jafs/65701/2014.10.22358/jafs/65701/2014 Search in Google Scholar

58. Kowalska M. & Cichosz G. (2013). Produkty mleczarskie–najlepsze źródło CLA. Bromatologia i Chemia Toksykologiczna, XLVI(1), 1-12. Search in Google Scholar

59. Krzęcio-Nieczyporuk E. & Antosik K. (2015). Spożycie wybranych produktów pochodzenia zwierzęcego a zachorowalność na choroby cywilizacyjne. Przegląd Hodowlany, 6, 8-11. Search in Google Scholar

60. Larson B.L. & Hegarty H.M. (1979). Orotic Acid in Milks of Various Species and Commercial Diary Products. Journal of Dairy Science, 62(10), 1641-1644. DOI: 10.3168/jds.S0022-0302(79)83474-8.10.3168/jds.S0022-0302(79)83474-8 Search in Google Scholar

61. Lim J.N., Oh J.J., Wang T., Lee J.S., Kim S.H., Kim Y.J. & Lee H.G. (2014). Trans-11 18: 1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. Nutrients, 6(2), 627-636. DOI: 10.3390/nu6020627.10.3390/nu6020627394272224518825 Search in Google Scholar

62. Lima M.R., Bahri H., Morais J.S., Veloso A.C., Fontes L., Lemos E.T. & Peres A.M. (2019). Assessing Serra da Estrela PDO cheeses’ origin-production date using fatty acids profiles. Journal of Food Measurement and Characterization, 13(4), 2988-2997.10.1007/s11694-019-00219-z Search in Google Scholar

63. Linares D.M., O’Callaghan T.F., O’Connor P.M., Ross R.P. & Stanton C. (2016). Streptococcus thermophilus APC151 strain is suitable for the manufacture of naturally GABA-enriched bioactive yogurt. Frontiers in Microbiology, 7, 1876. DOI: 10.3389/fmicb.2016.01876.10.3389/fmicb.2016.01876511897027920772 Search in Google Scholar

64. López-Expósito I., Miralles B., Amigo L. & Hernández-Ledesma B. (2017). Health Effects of Cheese Components with a Focus on Bioactive Peptides. Fermented Foods in Health and Disease Prevention, 239-273. DOI:10.1016/b978-0-12-802309-9.00011-x.10.1016/B978-0-12-802309-9.00011-X Search in Google Scholar

65. Malara M., Tkaczyk J., Kęska A., Lutosławska G. & Mazurek K. (2017). Calcium, magnesium and phosphorus dietary intake in active and sedentary Polish students. Biomedical Human Kinetics, 9(1), 140-145. DOI: 10.1515/bhk-2017-0020.10.1515/bhk-2017-0020 Search in Google Scholar

66. Manolaki P., Katsiari M.C. & Alichanidis E. (2006). Effect of a commercial adjunct culture on organic acid contents of low-fat Feta-type cheese. Food chemistry, 98(4), 658-663. DOI: 10.1016/j.foodchem.2005.06.031.10.1016/j.foodchem.2005.06.031 Search in Google Scholar

67. Marcone S., Belton O. & Fitzgerald D.J. (2017). Milk-derived bioactive peptides and their health promoting effects: a potential role in atherosclerosis. British Journal of Clinical Pharmacology, 83(1), 152-162. DOI: 10.1111/bcp.13002.10.1111/bcp.13002533816927151091 Search in Google Scholar

68. Markiewicz-Kęszycka M., Czyżak-Runowska G., Lipińska P. & Wójtowski J. (2013). Fatty acid profile of milk-a review. Bulletin of the Veterinary Institute in Pulawy, 57(2), 135-139.10.2478/bvip-2013-0026 Search in Google Scholar

69. Marrone R., Balestrieri A., Pepe T., Vollano L., Murru N., Michael J.D. & Anastasio A. (2014). Physicochemical composition, fatty acid profile and cholesterol content of “Pecorino Carmasciano” cheese, a traditional Italian dairy product. Journal of Food Composition and Analysis, 36(1-2), 85-89. DOI: 10.1016/j.jfca.2014.05.006.10.1016/j.jfca.2014.05.006 Search in Google Scholar

70. Martuscelli M., Gardini F., Torriani S., Mastrocola D., Serio A., Chaves-López C., Schirone M. & Suzzi G. (2005). Production of biogenic amines during the ripening of Pecorino Abruzzese cheese. International Dairy Journal, 15(6-9), 571-578. DOI: 10.1016/j.idairyj.2004.11.008.10.1016/j.idairyj.2004.11.008 Search in Google Scholar

71. Meira S.M.M., Daroit D.J., Helfer V.E., Corrêa A.P.F., Segalin J., Carro S. & Brandelli A. (2012). Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Research International, 48(1), 322-329. DOI: 10.1016/j.foodres.2012.05.009.10.1016/j.foodres.2012.05.009 Search in Google Scholar

72. Mikami Y. (1988). Microbial conversion of terpenoids. Biotechnology and genetic engineering reviews, 6(1), 271-320. DOI: 10.1080/02648725.1988.10647850.10.1080/02648725.1988.10647850 Search in Google Scholar

73. Milewski S. (2006). Walory prozdrowotne produktów owczych. Medycyna Weterynaryjna, 62(5), 516-519. Search in Google Scholar

74. Milewski S., Ząbek K., Antoszkiewicz Z., Tański Z. & Błażejak J. (2016). Walory prozdrowotne serów z mleka owczego i koziego wytworzonych w gospodarstwach Warmii i Mazur. Przegląd Hodowlany, 2, 20-22. Search in Google Scholar

75. Miller A., McGrath E., Stanton C. & Devery R. (2003). Vaccenic acid (t11–18: 1) is converted to c9, t11-CLA in MCF-7 and SW480 cancer cells. Lipids, 38(6), 623-632. DOI: 10.1007/s11745-003-1107-8.10.1007/s11745-003-1107-8 Search in Google Scholar

76. Miner-Williams W.M., Stevens B.R. & Moughan P.J. (2014). Are intact peptides absorbed from the healthy gut in the adult human? Nutrition research reviews, 27(2), 308-329. DOI: 10.1017/S0954422414000225.10.1017/S0954422414000225 Search in Google Scholar

77. Moran L., Aldezabal A., Aldai N. & Barron L.J.R. (2019). Terpenoid traceability of commercial sheep cheeses produced in mountain and valley farms: From pasture to mature cheeses. Food Research International, 126, 108669. DOI: 10.1016/j.foodres.2019.108669.10.1016/j.foodres.2019.108669 Search in Google Scholar

78. Muñoz N., Ortigosa M., Torre P. & Izco J.M. (2003). Free amino acids and volatile compounds in an ewe’s milk cheese as affected by seasonal and cheese-making plant variations. Food Chemistry, 83(3), 329-338. DOI: 10.1016/S0308-8146(03)00133-X.10.1016/S0308-8146(03)00133-X Search in Google Scholar

79. Murgia M.A., Deiana P., Nudda A., Correddu F., Montanari L. & Mangia N.P. (2020). Assessment of microbiological quality and physicochemical parameters of Fruhe made by ovine and goat milk: A Sardinian (Italy) cheese. Fermentation, 6(4), 119. DOI: 10.3390/fermentation6040119.10.3390/fermentation6040119 Search in Google Scholar

80. Murru E., Carta G., Cordeddu L., Melis M.P., Desogus E., Ansar H., Chilliard Y., Ferlay A., Stanton C., Coakley M., Ross R.P., Piredda G., Addis M., Mele M.C., Cannelli G., Banni S. & Manca, C. (2018). Dietary Conjugated Linoleic Acid-Enriched Cheeses Influence the Levels of Circulating n-3 Highly Unsaturated Fatty Acids in Humans. International Journal of Molecular Sciences. 19(6), 1730. DOI: 10.3390/ijms19061730.10.3390/ijms19061730603224429891784 Search in Google Scholar

81. Nagao K. & Yanagita T. (2010). Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacological Research, 61(3), 208-212. DOI: 10.1016/j.phrs.2009.11.007.10.1016/j.phrs.2009.11.007 Search in Google Scholar

82. Nakano T., Sugawara M. & Kawakami H. (2001). Sialic acid in human milk: composition and functions. Acta Paediatr Taiwan, 42(1), 11-17. Search in Google Scholar

83. Nomura M., Kimoto H., Someya Y., Furukawa S. & Suzuki I. (1998). Production of γ-aminobutyric acid by cheese starters during cheese ripening. Journal of Dairy Science, 81(6), 1486-1491. DOI: 10.3168/jds.S0022-0302(98)75714-5.10.3168/jds.S0022-0302(98)75714-5 Search in Google Scholar

84. Nudda A., McGuire M.A., Battacone G. & Pulina G. (2005). Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheese and ricotta. Journal of Dairy Science, 88(4), 1311-1319. DOI: 10.3168/jds.S0022-0302(05)72797-1.10.3168/jds.S0022-0302(05)72797-1 Search in Google Scholar

85. OECD/FAO. (2021). OECD-FAO Agricultural Outlook 2020-2029. Retrieved November 14, 2021, from https://www.oecd-ilibrary.org/agriculture-and-food/cheese-projections-consumption-food_1eddd347-en Search in Google Scholar

86. Ordonez A.I., Ibanez F.C., Torre P. & Barcina Y. (1997). Formation of biogenic amines in Idiazábal ewe’s-milk cheese: effect of ripening, pasteurization, and starter. Journal of Food Protection, 60(11), 1371-1375. DOI: 10.4315/0362-028X-60.11.1371.10.4315/0362-028X-60.11.1371 Search in Google Scholar

87. Oruch R. & Pryme I.F. (2012). The biological significance of vitamin A in humans: A review of nutritional aspects and clinical considerations. Science Jet, 1(19), 1-13. Search in Google Scholar

88. Papademas P. & Robinson R.K. (2002). Some Volatile Plant Compounds in Halloumi Cheeses made from Ovine or Bovine Milk. LWT - Food Science and Technology, 35(6), 512–516. DOI: 10.1006/fstl.2002.0901.10.1006/fstl.2002.0901 Search in Google Scholar

89. Pariza M.W. (1999). The biological activities of conjugated linoleic acid. In M.P. Yurawecz, M.M. Mossoba, J.K.G. Kramer, M.W. Pariza & G.J. Nelson (Eds.), Advances in conjugated linoleic acid research, Vol. 1. (pp. 12-20), AOCS Press. Search in Google Scholar

90. Partidário A.M., Ribeiro J.C. & Prates J.A. (2008). Fatty acid composition and nutritional value of fat in three PDO ewe’s milk Portuguese cheeses. Dairy Science and Technology, 88(6), 683-694. DOI: 10.1051/dst:2008032.10.1051/dst:2008032 Search in Google Scholar

91. Pękala J., Patkowska-Sokoła B., Bodkowski R., Jamroz D., Nowakowski P., Lochynski S. & Librowski, T. (2011). L-carnitine-metabolic functions and meaning in humans life. Current Drug Metabolism, 12(7), 667-678. DOI: 10.2174/138920011796504536.10.2174/138920011796504536 Search in Google Scholar

92. Perretti G., Marconi O., Montanari L. & Fantozzi, P. (2004). Rapid determination of total fats and fat-soluble vitamins in Parmigiano cheese and salami by SFE. LWT-Food Science and Technology, 37(1), 87-92. DOI: 10.1016/S0023-6438(03)00138-5.10.1016/S0023-6438(03)00138-5 Search in Google Scholar

93. Pinho O., Ferreira I.M., Mendes E., Oliveira B.M. & Ferreira M. (2001). Effect of temperature on evolution of free amino acid and biogenic amine contents during storage of Azeitão cheese. Food Chemistry, 75(3), 287-291. DOI: 10.1016/S0308-8146(01)00109-1.10.1016/S0308-8146(01)00109-1 Search in Google Scholar

94. Pintado A.I., Pinho O., Ferreira I.M., Pintado M.M.E., Gomes A.M. & Malcata F.X. (2008). Microbiological, biochemical and biogenic amine profiles of Terrincho cheese manufactured in several dairy farms. International Dairy Journal, 18(6), 631-640. DOI: 10.1016/j.idairyj.2007.11.021.10.1016/j.idairyj.2007.11.021 Search in Google Scholar

95. Pintus S., Murru E., Carta G., Cordeddu L., Batetta B., Accossu S., Pistis D., Uda S., Elena Ghiani M., Mele M., Secchiari P., Almerighi G., Pintus P. & Banni, S. (2013). Sheep cheese naturally enriched in α-linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. British Journal of Nutrition, 109(8), 1453-1462. DOI: 10.1017/S0007114512003224.10.1017/S000711451200322422917075 Search in Google Scholar

96. Pisanu S., Pagnozzi D., Pes M., Pirisi A., Roggio T., Uzzau S. & Addis M.F. (2015). Differences in the peptide profile of raw and pasteurised ovine milk cheese and implications for its bioactive potential. International Dairy Journal, 42, 26-33. DOI: 10.1016/j.idairyj.2014.10.007.10.1016/j.idairyj.2014.10.007 Search in Google Scholar

97. Poulopoulou I., Zoidis E., Massouras T. & Hadjigeorgiou I. (2011). Terpenes transfer to milk and cheese after oral administration to sheep fed indoors. Journal of Animal Physiology and Animal Nutrition, 96(2), 172–181. DOI: 10.1111/j.1439-0396.2011.0. Search in Google Scholar

98. Poveda J.M., Chicón R., & Cabezas L. (2015). Biogenic amine content and proteolysis in Manchego cheese manufactured with Lactobacillus paracasei subsp. paracasei as adjunct and other autochthonous strains as starters. International Dairy Journal, 47, 94-101. DOI: 10.1016/j.idairyj.2015.03.004.10.1016/j.idairyj.2015.03.004 Search in Google Scholar

99. Prandini A., Sigolo S. & Piva G. (2011). A comparative study of fatty acid composition and CLA concentration in commercial cheeses. Journal of Food Composition and Analysis, 24(1), 55-61. DOI: 10.1016/j.jfca.2010.04.004.10.1016/j.jfca.2010.04.004 Search in Google Scholar

100. Prandini A., Sigolo S., Tansini G., Brogna N. & Piva G. (2007). Different level of conjugated linoleic acid (CLA) in dairy products from Italy. Journal of Food Composition and Analysis, 20(6), 472–479. DOI: 10.1016/j.jfca.2007.03.001.10.1016/j.jfca.2007.03.001 Search in Google Scholar

101. Ptasińska-Marcinkiewicz J. (2014). Hodowla owiec i produkcja mleka owczego w Polsce i na świecie. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, 3(927), 43-55.10.15678/ZNUEK.2014.0927.0304 Search in Google Scholar

102. Rashidinejad A., Bremer P., Birch, J. & Oey, I. (2017). Nutrients in Cheese and Their Effect on Health and Disease. Academic Press.10.1016/B978-0-12-809762-5.00014-0 Search in Google Scholar

103. Raynal-Ljutovac K., Lagriffoul G., Paccard P., Guillet I. & Chilliard Y. (2008). Composition of goat and sheep milk products: An update. Small ruminant research, 79(1), 57-72. DOI: 10.1016/j.smallrumres.2008.07.009.10.1016/j.smallrumres.2008.07.009 Search in Google Scholar

104. Recio I., de la Fuente M.A., Juárez M. & Ramos M. (2009). Bioactive components in sheep milk. In Y. W. Park (Ed.), Bioactive components in milk and dairy products. (pp. 83-104), John Wiley & Sons.10.1002/9780813821504.ch4 Search in Google Scholar

105. Redruello B., Saidi Y., Sampedro L., Ladero V., Del Rio B. & Alvarez M.A. (2021). GABA-Producing Lactococcus lactis Strains Isolated from Camel’s Milk as Starters for the Production of GABA-Enriched Cheese. Foods, 10(3), 633. DOI: 10.3390/foods10030633.10.3390/foods10030633800247933802798 Search in Google Scholar

106. Renes E., Ladero V., Tornadijo M.E. & Fresno J.M. (2019). Production of sheep milk cheese with high γ-aminobutyric acid and ornithine concentration and with reduced biogenic amines level using autochthonous lactic acid bacteria strains. Food microbiology, 78, 1-10. DOI: 10.1016/j.fm.2018.09.003.10.1016/j.fm.2018.09.003 Search in Google Scholar

107. Revilla I., Lobos Ortega I.A., Vivar-Quintana A.M., González-Martín M.I., Hernández Hierro J.M. & González Pérez C. (2014). Variations in the contents of vitamins A and E during the ripening of cheeses with different compositions. Czech Journal of Food Sciences, 32(4), 342-347. DOI: 10.13140/2.1.2177.0884. Search in Google Scholar

108. Rizvi S., Raza S.T., Ahmed F., Ahmad A., Abbas S. & Mahdi F. (2014). The role of vitamin e in human health and some diseases. Sultan Qaboos University Medical Journal, 14(2), e157-65. Search in Google Scholar

109. Rizzello C.G., Losito I., Gobbetti M., Carbonara T., De Bari M.D. & Zambonin P.G. (2005). Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. Journal of Dairy Science, 88(7), 2348-2360. DOI: 10.3168/jds.S0022-0302(05)72913-1.10.3168/jds.S0022-0302(05)72913-1 Search in Google Scholar

110. Robinson R.K. & Tamime A.Y. (1996). Feta & Related Cheeses. CRC Press. Search in Google Scholar

111. Roche H.M., Noone E. & Gibney A.N.M.J. (2001). Conjugated linoleic acid: a novel therapeutic nutrient? Nutrition Research Reviews, 14(1), 173-188. DOI: 10.1079/NRR200122. Search in Google Scholar

112. Rospond B. & Chłopicka J. (2013). Funkcje biologiczne L-karnityny i jej zawartość w wybranych produktach spożywczych. Przegląd Lekarski, 70(2), 85-91. Search in Google Scholar

113. Rutkowska E., Tambor K., Rutkowska J. & Stołyhwo A. (2015). Charakterystyka prozdrowotnych kwasów tłuszczowych tłuszczu mlecznego. Problemy Higieny i Epidemiologii, 96(2), 377-386. Search in Google Scholar

114. Salque M., Bogucki P.I., Pyzel J., Sobkowiak-Tabaka I., Grygiel R., Szmyt M. & Evershed R.P. (2013). Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature, 493(7433), 522. DOI: 10.1038/nature11698.10.1038/nature11698 Search in Google Scholar

115. Samraj A.N., Pearce O.M., Läubli H., Crittenden A.N., Bergfeld A.K., Banda K., Gregg C.J., Bingman A.E., Secrest P., Diaz S.L., Varki N.M. & Varki A. (2015). A red meat-derived glycan promotes inflammation and cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 542-547. DOI: 10.1073/pnas.1417508112.10.1073/pnas.1417508112 Search in Google Scholar

116. Sanjuán E., Saavedra P., Millán R., Castelo M. & Fernández-Salguero J. (1998). Effect of ripening and type of rennet on the mineral content of Los Pedroches cheese. Journal of food quality, 21(3), 187-200. DOI: 10.1111/j.1745-4557.1998.tb00515.x.10.1111/j.1745-4557.1998.tb00515.x Search in Google Scholar

117. Santiago-López L., Aguilar-Toalá J.E., Hernández-Mendoza A., Vallejo-Cordoba B., Liceaga A.M. & González-Córdova A.F. (2018). Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. Journal of dairy science, 101(5), 3742-3757. DOI: 10.3168/jds.2017-13465.10.3168/jds.2017-13465 Search in Google Scholar

118. Santos M.S. (1996). Biogenic amines: their importance in foods. International Journal of Food Microbiology, 29(2-3), 213-231. DOI: 10.1016/0168-1605(95)00032-1.10.1016/0168-1605(95)00032-1 Search in Google Scholar

119. Sauer L.A., Dauchy R.T., Blask D.E., Krause J.A., Davidson L.K., Dauchy E.M., Welham K.M. & Coupland K. (2004). Conjugated linoleic acid isomers and trans fatty acids inhibit fatty acid transport in hepatoma 7288CTC and inguinal fat pads in Buffalo rats. The Journal of nutrition, 134(8), 1989-1997. DOI: 10.1093/jn/134.8.1989.10.1093/jn/134.8.198915284388 Search in Google Scholar

120. Schirone M., Tofalo R., Fasoli G., Perpetuini G., Corsetti A., Manetta A.C., Ciarrocchi A. & Suzzi G. (2013). High content of biogenic amines in Pecorino cheeses. Food microbiology, 34(1), 137-144. DOI: 10.1016/j.fm.2012.11.022.10.1016/j.fm.2012.11.02223498190 Search in Google Scholar

121. Schirone M., Tofalo R., Mazzone G., Corsetti A. & Suzzi, G. (2011). Biogenic amine content and microbiological profile of Pecorino di Farindola cheese. Food Microbiology, 28(1), 128-136. DOI: 10.1016/j.fm.2010.09.00510.1016/j.fm.2010.09.00521056784 Search in Google Scholar

122. Schirone M., Tofalo R., Visciano P., Corsetti A., Suzzi G. (2012). Biogenic amines in Italian Pecorino cheese. Frontiers in microbiology, 3, 171. DOI: 10.3389/fmicb.2012.00171.10.3389/fmicb.2012.00171 Search in Google Scholar

123. Seline K.G. & Johein H. (2007). The determination of L-carnitine in several food samples. Food chemistry, 105(2), 793-804. DOI: 10.1016/j.foodchem.2007.01.058.10.1016/j.foodchem.2007.01.058 Search in Google Scholar

124. Siragusa S., De Angelis M., Di Cagno R., Rizzello C.G., Coda R. & Gobbetti M. (2007). Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Applied and Environmental Microbiology, 73(22), 7283-7290. DOI: 10.1128/AEM.01064-07.10.1128/AEM.01064-07 Search in Google Scholar

125. Sofi F., Buccioni A., Cesari F., Gori A.M., Minieri S., Mannini L., Casini A., Gensini G.F., Abbate R. & Antongiovanni M. (2010). Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: a dietary intervention study. Nutrition, Metabolism & Cardiovascular Diseases, 20(2), 117-124. DOI: 10.1016/j.numecd.2009.03.004.10.1016/j.numecd.2009.03.004 Search in Google Scholar

126. Szczurek W. (2004). Kwas sjalowy - nowe spojrzenie na wpływ produktów pochodzenia zwierzęcego na organizm człowieka. Wiadomości Zootechniczne, 42(4), 27-36. Search in Google Scholar

127. Tavaria F.K., Franco I., Carballo F.J. & Malcata F.X. (2003). Amino acid and soluble nitrogen evolution throughout ripening of Serra da Estrela cheese. International Dairy Journal, 13(7), 537-545. DOI: 10.1016/S0958-6946(03)00060-8.10.1016/S0958-6946(03)00060-8 Search in Google Scholar

128. Tofalo R., Perpetuini G., Battistelli N., Pepe A., Ianni A., Martino G. & Suzzi, G. (2019). Accumulation γ-Aminobutyric Acid and Biogenic Amines in a Traditional Raw Milk Ewe’s Cheese. Foods, 8(9), 401. DOI: 10.3390/foods8090401.10.3390/foods8090401 Search in Google Scholar

129. Tong X., Chen G.C., Zhang Z., Wei Y.L., Xu J.Y. & Qin L.Q. (2017). Cheese Consumption and Risk of All-Cause Mortality: A Meta-Analysis of Prospective Studies. Nutrients, 9(1), 63. DOI: 10.3390/nu9010063.10.3390/nu9010063 Search in Google Scholar

130. Torracca, B., Nuvoloni, R., Ducci, M., Bacci, C., & Pedonese, F. (2015). Biogenic amines content of four types of “Pecorino” cheese manufactured in Tuscany. International Journal of Food Properties, 18(5), 999-1005.10.1080/10942912.2013.877026 Search in Google Scholar

131. Urbienė, S. & Leskauskaitė, D. (2006). Formation of some organic acids during fermentation of milk. Polish Journal of Food and Nutrition Sciences, 15(3), 277-281. Search in Google Scholar

132. Valdivielso I., de Renobales M., Aldai N. & Barron L.J.R. (2017). Changes in terpenoid composition of milk and cheese from commercial sheep flocks associated with seasonal feeding regimens throughout lactation. Journal of dairy science, 100(1), 96-105. DOI: 10.3168/jds.2016-11761.10.3168/jds.2016-11761 Search in Google Scholar

133. Valsamaki K., Michaelidou A., & Polychroniadou A. (2000). Biogenic amine production in Feta cheese. Food chemistry, 71(2), 259-266. DOI: 10.1016/S0308-8146(00)00168-0.10.1016/S0308-8146(00)00168-0 Search in Google Scholar

134. Verzera A., Condurso C., Ziino, M., Romeo V., Todaro M., Conte F. & Dima G. (2010). Free fatty acids and other volatile compounds for the characterisation of “Vastedda della valle del Belìce” cheese Acidos grasos libres y otros constituyentes volátiles para la caracterización de queso “Vastedda della vella del Belìce”. CyTA–Journal of Food, 8(3), 237-243. DOI: 10.1080/19476330903450282.10.1080/19476330903450282 Search in Google Scholar

135. Walther B., Schmid A., Sieber R. & Wehrmüller, K. (2008). Cheese in nutrition and health. Dairy Science & Technology, 88(4-5), 389-405. DOI: 10.1051/dst:2008012.10.1051/dst:2008012 Search in Google Scholar

136. Wang B. (2009). Sialic acid is an essential nutrient for brain development and cognition. Annual Review of Nutrition, 29, 177-222. DOI: 10.1146/annurev.nutr.28.061807.155515.10.1146/annurev.nutr.28.061807.155515 Search in Google Scholar

137. Watanabe M., Maemura K., Kanbara K., Tamayama T. & Hayasaki, H. (2002). GABA and GABA receptors in the central nervous system and other organs. International review of cytology, 213, 1-47. DOI: 10.1016/s0074-7696(02)13011-7.10.1016/S0074-7696(02)13011-7 Search in Google Scholar

138. West T.P., Chunduru J. & Murahari E.C. (2017). Orotic Acid: Why it is Important to Understand Its Role in Metabolism. Biochemistry & Physiology, 6(1), 1000e157. DOI: 10.4172/2168-9652.1000e157.10.4172/2168-9652.1000e157 Search in Google Scholar

139. Woollard D.C., Indyk H.E. & Woollard, G.A. (1999). Carnitine in milk: a survey of content, distribution and temporal variation. Food chemistry, 66(1), 121-127. DOI: 10.1016/S0308-8146(99)00042-4.10.1016/S0308-8146(99)00042-4 Search in Google Scholar

140. Wright L.D., Huff J.W., Skeggs H.R., Valentik K.A. & Bosshardt, D.K. (1950). Orotic acid, a growth factor for Lactobacillus bulgaricus. Journal of the American Chemical Society, 72(5), 2312-2313. DOI: 10.1021/ja01161a544.10.1021/ja01161a544 Search in Google Scholar

141. Yoto A., Murao S., Motoki M., Yokoyama Y., Horie N., Takeshima K., Masuda K., Kim M. & Yokogoshi H. (2012). Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks. Amino Acids, 43(3), 1331-1337. DOI: 10.1007/s00726-011-1206-6.10.1007/s00726-011-1206-6 Search in Google Scholar

142. Zamberlin Š., Antunac N., Havranek J. & Samaržija D. (2012). Mineral elements in milk and dairy products. Mljekarstvo, 62(2), 111-125. Search in Google Scholar

143. Zazzu C., Addis M., Caredda M., Scintu M.F., Piredda G. & Sanna G. (2019). Biogenic amines in traditional fiore Sardo PDO sheep cheese: Assessment, validation and application of an RP-HPLCDAD-UV method. Separations, 6(1), 11. DOI: 10.3390/separations6010011.10.3390/separations6010011 Search in Google Scholar

144. Zdrojewicz Z., Zyskowska K. & Górecka A. 2017. Wpływ substancji zawartych w serach na organizm człowieka. Medycyna Rodzinna, 20(2), 124-129. Search in Google Scholar

145. Živný P., Živná H., Pavlíková L., Hrubá P., PaličkaV., Soukup T. & Šimáková, E. (2007). The effect of cholesterol and orotic acid administration and methionin-cholin deficiency on liver DNA synthesis and lipid metabolism in rats. Folia Gastroenterologica et Hepatologica, 5, 3-4. Search in Google Scholar

146. Zlatanos S., Laskaridis K., Feist C. & Sagredos A. (2002). CLA content and fatty acid composition of Greek Feta and hard cheeses. Food Chemistry, 78(4), 471-477. DOI: 10.1016/S0308-8146(02)00159-0.10.1016/S0308-8146(02)00159-0 Search in Google Scholar

eISSN:
2344-150X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, other, Food Science and Technology