1. bookVolume 24 (2020): Issue 2 (December 2020)
Journal Details
License
Format
Journal
eISSN
2344-150X
First Published
30 Jul 2013
Publication timeframe
2 times per year
Languages
English
Open Access

Mathematical Modelling of the Mechanical Properties of Four Varieties of Brine Pickles Using Neural Networks

Published Online: 24 Dec 2020
Volume & Issue: Volume 24 (2020) - Issue 2 (December 2020)
Page range: 257 - 268
Received: 16 Sep 2020
Accepted: 15 Oct 2020
Journal Details
License
Format
Journal
eISSN
2344-150X
First Published
30 Jul 2013
Publication timeframe
2 times per year
Languages
English

1. Nikora, V. (2006). Hydrodynamics of aquatic ecosystems: spatial-averaging perspective. Acta Geophysica, 55(1), 3-10. DOI: 10.2478/s11600-006-0043-6.10.2478/s11600-006-0043-6Search in Google Scholar

2. Cudak, M. & Karcz J. (2006). Momentum transfer in an agitated vessel with off-centred impellers. Chem. Pap. 60(5), 375-380. DOI: 10.2478/s11696-006-0068-y10.2478/s11696-006-0068-ySearch in Google Scholar

3. Arendse, E., Fawole, O.A, & Opara, U.L. (2014). Influence of storage temperature and duration on postharvest physico-chemical and mechanical properties of pomegranate fruit and arils. CyTA - Journal of Food, 12(4), 389-398. DOI: 10.1080/19476337.2014.900114.10.1080/19476337.2014.900114Search in Google Scholar

4. Baafi, E., & Safo-Kantanka, O. (2008). Agronomic evaluation of some local elite and released cassava varieties in the forest and transitional ecozones of Ghana. Asian J. Agric. Res., 2, 32-36. DOI: 10.3923/ajar.2008.32.36.10.3923/ajar.2008.32.36Search in Google Scholar

5. Bargel, H., & Neinhuis, C. (2005). Tomato fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. J. Exp. Bot., 56(413), 1049-1060. DOI: 10.1093/jxb/eri098.10.1093/jxb/eri09815710631Search in Google Scholar

6. Bourne, M.C. (2002) Food texture and viscosity. New York: Academic Press, 416.10.1016/B978-012119062-0/50001-2Search in Google Scholar

7. Brasca, M., Morandi, S., Lodi, R., & Tamburini A. (2007). Redox Potential to Discriminate among Species of Lactic Acid Bacteria. J. Appl. Microbiol., 103, 1516-1524. DOI: 10.1111/j.1365-2672.2007.03392.x.10.1111/j.1365-2672.2007.03392.x17953562Search in Google Scholar

8. Eboibi, O., & Uguru, H. (2017). Storage conditions effect on physical, mechanical and textural properties of intact cucumber (cv Nandini) fruit. Int. J. Eng. Tech. Res., 7(11), 48-56.Search in Google Scholar

9. El-Garawany, M.M., & Albaloushi, N.S. (2015). Deficit Irrigation Effects on Soil Chemistry Properties Yield and, Yield Components and Fruit Firmness of Cucumber and (Cucumis sativus L.) under Arid Condition of Al-Hassa, Saudi Arabia. The Meteorology, Environment and Arid Land Agriculture Journal, 26(1), 57 – 68. DOI: 10.4197/Met.26-1.6.10.4197/Met.26-1.6Search in Google Scholar

10. Fleming, H.P., McDonald, L.C., McFeeters, R.F., Thompson, R.L., & Humphries E.G. (1995). Fermentation of Cucumbers without Sodium Chloride. J. Food Sci., 60 (2), 312-315. DOI: 10.1111/j.1365-2621.1995.tb05662.x.10.1111/j.1365-2621.1995.tb05662.xSearch in Google Scholar

11. Franco, W., Perez-Diaz, I., Johanningsmeier, S., & McFeeters, R. (2012). Characteristic of Spoilage-Associated Secondary Cucumber Fermentation. Appl. Environ. Microbiol., 78(4), 1273-1284. DOI: 10.1128/AEM.06605-11.10.1128/AEM.06605-11327302522179234Search in Google Scholar

12. Garcha, S., & Natt, S. (2012). In Situ Control of Food Spoilage Fungus Using Lactobacillus Acidophilus NCDC 291. J. Food Sci. Tech., 49 (5), 643-648. DOI: 10.1007/s13197-011-0482-1.10.1007/s13197-011-0482-1Search in Google Scholar

13. Gorzelany, J., Migut, D., Matłok, N., Antos, P., Kuźniar, P., & Balawejder, M. (2017). Impact of Pre-Ozonation on Mechanical Properties of Selected Genotypes of Cucumber Fruits during the Souring Process. Ozone: Sci. & Eng., 39(3), 188–95. DOI: 10.1080/01919512.2016.1273756.10.1080/01919512.2016.1273756Search in Google Scholar

14. Guiné, R. P., Henriques, F., & Barroca, M. J. (2014). Influence of drying treatments on the physical and chemical properties of cucumber. J. Food. Meas. Charact., 8(3), 195–206. DOI: 10.1007/s11694-014-9180-9.10.1007/s11694-014-9180-9Search in Google Scholar

15. Hadzima-Nyarko, M., Nyarko, E.K., & Moric, D. (2011). A neural network based modelling and sensitivity analysis of damage ratio coefficient. Expert Syst. Appl., 38, 13405-13413. DOI: 10.1016/j.eswa.2011.04.169.10.1016/j.eswa.2011.04.169Search in Google Scholar

16. Harker, F.R., Maindonald, J., Murray, S.H., Gunson, F.A., Hallett, I.C., & Walker, S.B. (2002). Sensory interpretation of instrumental measurements: texture of apple fruit. Postharvest Biol. Tech., 24, 225-239. DOI: 10.1016/S0925-5214(01)00158-2.10.1016/S0925-5214(01)00158-2Search in Google Scholar

17. Hashemi, S. M. B., & Khaneghah, A. M. (2017). Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Prog. Org. Coat., 110, 35–41.10.1016/j.porgcoat.2017.04.041Search in Google Scholar

18. Hashemi, S. M. B., Khaneghah, A. M., & Ghahfarrokhi, M. G., Eş, I. (2017). Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biol. Tech., 125, 26–34. DOI: 10.1016/j.porgcoat.2017.04.041.10.1016/j.porgcoat.2017.04.041Search in Google Scholar

19. Jahangiri, M., Hassan-Beygi, S.R., Aboonajmi, M., & Lotfi, M. (2016). Effects of storage duration and conditions on mechanical properties of Viola cucumber fruit under compression loading. Agric. Eng. Int.: CIGR J., 18 (2), 323-332.Search in Google Scholar

20. Kang, H.M., Park, K.W., & Saltveit, M.E. (2002). Elevated growing temperatures during the day improve the postharvest chilling tolerance of greenhouse-grown cucumber (Cucumis sativus) fruit. J. Postharvest Biol. Tech., 24, 49-57. DOI: 10.1016/S0925-5214(01)00129-6.10.1016/S0925-5214(01)00129-6Search in Google Scholar

21. Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L.G. (2006). Some physical properties of Pistachio (Pistacia vera L.) nut and its kernel. J. Food Eng., 72, 30-38. DOI: 10.1016/j.jfoodeng.2004.11.016.10.1016/j.jfoodeng.2004.11.016Search in Google Scholar

22. Kohyama, K., Nagata, A., Tamaki, Y., & Sakurai, N. (2009). Comparison of Human-Bite and Instrument Puncture Tests of Cucumber Texture. Postharvest Biol. Tech., 52(2), 243–246. DOI: 10.1016/j.postharvbio.2008.12.001.10.1016/j.postharvbio.2008.12.001Search in Google Scholar

23. Manuwa, S.I., & Muhammad, H.A. (2011). Effects of moisture content and compression axis on mechanical properties of shea kernel. J. Food Eng., 105, 144-148. DOI: 10.1016/j.jfoodeng.2011.02.017.10.1016/j.jfoodeng.2011.02.017Search in Google Scholar

24. Miraei Ashtiani, S.H., Golzarian, M.R., Motie, J.B., Emadi, B., Jamal, N.N., & Mohammadinezhad, H. (2016). Effect of Loading Position and Storage Duration on the Textural Properties of Eggplant. Int. J. Food Prop., 19, 814–825. DOI: 10.1080/10942912.2015.1045515.10.1080/10942912.2015.1045515Search in Google Scholar

25. Mollazade, K., Omid, M., Akhlaghian, T., Fardin, K., Yousef Rezaei, K., Mohtasebi, S.S., & Zude, M. (2013). Analysis of texture-based features for predicting mechanical properties of horticultural products by laser light backscattering imaging. Comp. Electron. Agric., 98, 34–45. DOI: 10.1016/j.compag.2013.07.011.10.1016/j.compag.2013.07.011Search in Google Scholar

26. Moradi, M., Mousavi Khaneghah, A., Parvaresh, M., & Balanian, H. (2019). Development and validation of mathematical modeling for terminal velocity of cantaloupe. J. Food Process Eng., 42, e13000. DOI: 10.1111/jfpe.13000.10.1111/jfpe.13000Search in Google Scholar

27. Moradi, M., Balanian, H., Taherian, A., & Mousavi Khaneghah, A. (2020). Physical and mechanical properties of three varieties of cucumber: A mathematical modeling. J. Food Process Eng., 43, e13323. DOI: 10.1111/jfpe.13323.10.1111/jfpe.13323Search in Google Scholar

28. Mousavizadeh, S.J., Mashayekhi, K., Garmakhany, A.D., Ehteshamnia, A., & Jafari, S.M. (2010). Evaluation of some physical properties of cucumber (Cucumis sativus L.). J. Agric. Sci. Tech., 4(4), 107-114.Search in Google Scholar

29. Mukherjee, P.K., Nema, N.K., Maity, N., & Sarkar, B.K. (2013). Phytochemical and therapeutic potential of cucumber. Fitoterapia Journal, 84, 227-236. DOI: 10.1016/j.fitote.2012.10.00310.1016/j.fitote.2012.10.00323098877Search in Google Scholar

30. Murcia, M. A., Jiménez-Monreal, A. M., Gárcia-Diz, L., Carmona, M., Maggi, L., & Martínez-Tome, M. (2009). Antioxidant activity of minimally processed (in modified atmospheres), dehydrated and ready-to-eat vegetables. Food Chem. Toxic., 47, 2103–2110. DOI: 10.1016/j.fct.2009.05.039.10.1016/j.fct.2009.05.03919500638Search in Google Scholar

31. Pentoś, K. (2016). The methods of extracting the contribution of variables in artificial neural network models – Comparison of inherent instability. Comp. Electron. Agric., 127, 141–146. DOI: 10.1016/j.compag.2016.06.010.10.1016/j.compag.2016.06.010Search in Google Scholar

32. Saeidirad, M.H., Rohani, A., & Zarifneshat, S. (2013). Predictions of viscoelastic behavior of pomegranate using artificial neural network and Maxwell model. Comp. Electron. Agric., 98, 1–7. DOI: 10.1016/j.compag.2013.07.009.10.1016/j.compag.2013.07.009Search in Google Scholar

33. Sahin, S., & Samnu, S. G. (2006). Physical properties of foods. Berlin, Germany: Springer.Search in Google Scholar

34. Sakata, Y., Horie, H., & Yoshioka, Y. (2011). Fruit Textures of Beit Alpha, Greenhouse, Japanese, Souring and Slicer-Type Cucumbers. The Japanese Society for Horticultural Science, 80 (4), 420–425.10.2503/jjshs1.80.420Search in Google Scholar

35. Sakurai, N., Iwatani, S., Terasaki, S. & Yamamoto, Y. (2005). Texture Evaluation of Cucumber by a New Acoustic Vibration Method. The Japanese Society for Horticultural Science, 74, 31-35.10.2503/jjshs.74.31Search in Google Scholar

36. Sandoval-Torres, S., Tovilla-Morales, A.S., & Hernández-Bautista, E. (2017). Dimensionless modeling for convective drying of tuberous crop (Solanum tuberosum) by considering shrinkage. J. Food Eng., 214, 147-157. DOI: 10.1016/j.jfoodeng.2017.06.014.10.1016/j.jfoodeng.2017.06.014Search in Google Scholar

37. Sotiroudis, G., Sotiroudis, E., & Chinou, E.I. (2010). Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumber (Cucumis sativus) cultivars. J. Food Biochem., 34, 61-78. DOI: 10.1111/j.1745-4514.2009.00296.x.10.1111/j.1745-4514.2009.00296.xSearch in Google Scholar

38. Turkmen, N., Sari, F., & Velioglu, Y. S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem., 93, 713–718. DOI: 10.1016/j.foodchem.2004.12.038.10.1016/j.foodchem.2004.12.038Search in Google Scholar

39. Vicente, A.R., Saladié, M., Rose, J.K.C, & Labavitch, J.M. (2007). The linkage between cell metabolism and fruit softening: Looking to the future. J. Sci. Food Agric., 87, 1435-1448. DOI: 10.1002/jsfa.2837.10.1002/jsfa.2837Search in Google Scholar

40. Xiaoyi, J., Yuan, W., Xingzhu, W., Yonghua, L., Weiwei, X., Hui, R., & Guoqing, H. (2013). Effects of Lactic Acid Bacteria Inoculated Fermentation of Sour Cucumbers. Advance J. Sci. Technol., 5 (12), 1610–1617. DOI: 10.19026/ajfst.5.3397.10.19026/ajfst.5.3397Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo