1. bookVolume 24 (2020): Issue 1 (June 2020)
Journal Details
First Published
30 Jul 2013
Publication timeframe
2 times per year
Open Access

Effect of Different Pre-Treatments on Antinutrients and Antioxidants of Rice Bean (Vigna umbellata)

Published Online: 25 Jun 2020
Volume & Issue: Volume 24 (2020) - Issue 1 (June 2020)
Page range: 25 - 38
Received: 20 Apr 2020
Accepted: 10 Jun 2020
Journal Details
First Published
30 Jul 2013
Publication timeframe
2 times per year

1. Acar, Ö.Ç., Gökmen, V., Pellegrini, N., & Fogliano, V. (2009). Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts and seeds. European Food Research and Technology, 229 (6), 961-969.10.1007/s00217-009-1131-zSearch in Google Scholar

2. Afify, A. E. M. M., El-Beltagi, H. S., El-Salam, S. M. A., & Omran, A. A. (2012). Biochemical changes in phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties. Asian Pacific Journal of Tropical Biomedicine, 2, 203–209.10.1016/S2221-1691(12)60042-2Search in Google Scholar

3. Aguilera, Y., Díaz, M. F., Jiménez, T., Benítez, V., Herrera, T., Cuadrado, C., Martín-Pedrosa, M., & Martín-Cabrejas, M. A. (2013). Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes. Journal of Agricultural and Food Chemistry, 61(34), 8120-8125.10.1021/jf402265223909570Search in Google Scholar

4. Andersen, P. (2012). Challenges for under-utilized crops illustrated by ricebean (Vigna umbellata) in India and Nepal. International Journal of Agricultural Sustainability 10(2), 164-174.10.1080/14735903.2012.674401Search in Google Scholar

5. Bepary, R., Wadikar, D., Neog, S., & Patki, P. (2016). Studies on physico-chemical and cooking characteristics of rice bean varieties grown in NE region of India. Journal of Food Science and Technology.Search in Google Scholar

6. Boateng, J., Verghese, M., Walker, L. T., & Ogutu, S. (2008). Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). LWT-Food Science and Technology, 41(9), 1541-1547.10.1016/j.lwt.2007.11.025Search in Google Scholar

7. Doblado, R., Frías, J., & Vidal-Valverde, C. (2007). Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vigna sinensis var. carilla) seeds induced by high pressure treatment. Food Chemistry, 101(3), 918-923.Search in Google Scholar

8. Frias, J., Miranda, M., Doblado, R., & Vidal-Valverde, C. (2005). Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinusalbus L. Multolupa. Food Chemistry, 92, 211-220.10.1016/j.foodchem.2004.06.049Search in Google Scholar

9. Gujral, H. S., Angurala, M., Sharma, P., & Singh, J. (2011). Phenolic content and antioxidant activity of germinated and cooked pulses. International Journal of Food Properties, 14(6), 1366-1374.10.1080/10942911003672167Search in Google Scholar

10. Gujral, H. S., Sharma, P., & Sharma, R. (2013). Antioxidant properties of sand roasted and steam cooked Bengal gram (Cicer arietinum). Food Science and Biotechnology, 22(1), 183-188.10.1007/s10068-013-0065-1Search in Google Scholar

11. Handa, V., Kumar, V., Panghal, A., Suri, S. & Kaur, J. (2017). Effect of soaking and germination on physicochemical and functional attributes of horsegram flour. Journal of Food Science and Technology, 54(13), 4229-4239.10.1007/s13197-017-2892-1568600329184229Search in Google Scholar

12. Jogihalli, P., Singh, L., Kumar, K., & Sharanagat, V. S. (2017). Physico-functional and antioxidant properties of sand-roasted chickpea (Cicer arietinum). Food Chemistry, 23(7), 1124-1132.10.1016/j.foodchem.2017.06.06928763959Search in Google Scholar

13. Kakati, P., Deka, S. C., Kotoki, D., & Saikia, S. (2010). Effect of traditional methods of processing on the nutrient contents and some antinutritional factors in newly developed cultivars of green gram [Vigna radiata (L.) Wilezek] and black gram [Vigna mungo (L.) Hepper] of Assam, India. International Food Research Journal, 17(2), 377-384.Search in Google Scholar

14. Kalpanadevi, V., & Mohan, V. R. (2013). Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.)Walp subsp. unguiculata. LWT-Food Science and Technology, 51(2), 455-461.10.1016/j.lwt.2012.09.030Search in Google Scholar

15. Kamtekar, S., Keer, V., & Patil, V. (2014). Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science, 4(09), 061-0.65.Search in Google Scholar

16. Kaur, D., & Kapoor, A. C. (1990). Some antinutritional factors in rice bean (Vigna umbellata): effects of domestic processing and cooking methods. Food Chemistry, 37(3), 171-179.10.1016/0308-8146(90)90135-QSearch in Google Scholar

17. Khandelwal, S., Udipi, S. A., & Ghugre, P. (2010). Polyphenols and tannins in Indian pulses: Effect of soaking, germination and pressure cooking. Food Research International, 43(2), 526-530.10.1016/j.foodres.2009.09.036Search in Google Scholar

18. Khang, D., Dung, T., Elzaawely, A., & Xuan, T. (2016). Phenolic profiles and antioxidant activity of germinated legumes. Foods, 5(2), 27.10.3390/foods5020027530234328231122Search in Google Scholar

19. Khattab, R. Y., & Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT-Food Science and Technology, 42(6), 1113-1118.10.1016/j.lwt.2009.02.004Search in Google Scholar

20. Khyade, V.B., & Jagtap, S. G. (2016). Sprouting exert significant influence on the antioxidant activity in selected pulses (Black Gram, Cowpea, Desi Chickpea and Yellow Mustard). World Scientific News, 35, 73-86.Search in Google Scholar

21. Kim, H. G., Kim, G. W., Oh, H., Yoo, S. Y., Kim, Y. O. & Oh, M. S. (2011). Influence of roasting on the antioxidant activity of small black soybean (Glycine max L. Merrill). LWT-Food Science and Technology, 44(4), 992-998.10.1016/j.lwt.2010.12.011Search in Google Scholar

22. Lopez-Amorós, M. L., Hernández, T., & Estrella, I. (2006). Effect of germination on legume phenolic compounds and their antioxidant activity. Journal of Food Composition and Analysis, 19(4), 277-283.10.1016/j.jfca.2004.06.012Search in Google Scholar

23. Luo, Y. W., Xie, W. H., Jin, X. X., Wang, Q., & Zai, X. M. (2013). Effects of germination and cooking for enhanced in vitro iron, calcium and zinc bioaccessibility from faba bean, azuki bean and mung bean sprouts. CyTA-Journal of Food, 11(4), 318-323.10.1080/19476337.2012.757756Search in Google Scholar

24. Mir, S. A., Bosco, S. J. D., Shah, M. A., & Mir, M. M. (2016). Effect of puffing on physical and antioxidant properties of brown rice. Food Chemistry, 191, 139–146.10.1016/j.foodchem.2014.11.02526258713Search in Google Scholar

25. Mugendi, J. B., Njagi, E. N. M., Kuria, E. N., Mwasaru, M. A., Mureithi, J. G., & Apostolides, Z. (2010). Effects of processing techniques on the nutritional composition and anti-nutrient content of mucuna bean (Mucunapruriens L.). African Journal of Food Science, 4(4), 156-166.Search in Google Scholar

26. Nwafor, F. I., Egonu, S. N., Nweze, N. O., & Ohabuenyi, N. (2017). Effect of processing methods on the nutritional values and anti-nutritive factors of Adenanthera pavonina L.(Fabaceae) seeds. African Journal of Biotechnology, 16(3), 106-112.10.5897/AJB2016.15782Search in Google Scholar

27. Okudu, H. O., & Ojinnaka, M. C. (2017). Effect of soaking time on the nutrient and antinutrient composition of Bambara groundnut seeds (Vigna subterranean). African Journal of Food Science and Technology. 8(2), 025-029.Search in Google Scholar

28. Oulai, P., Lessoy, Z. O. U. E., Otchoumou, A., & Niamke, S. (2016). Study of roasting effect on nutritive and antioxidant properties of leafy vegetables consumed in northern côted’ivoire. Food and Environment Safety Journal, 13(3).Search in Google Scholar

29. Rajurkar, N. S., & Hande, S.M. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 73 (2), 146-151.10.4103/0250-474X.91574Search in Google Scholar

30. Ranganna, S. (2016). Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw-Hill Education.Search in Google Scholar

31. Ranilla, L. G., Genovese, M. I., & Lajolo, F. M. (2009). Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Phaseolus vulgaris L.) cultivars. Journal of Agricultural and Food Chemistry, 57(13), 5734-5742.10.1021/jf900527vSearch in Google Scholar

32. Sadasivam, S., & Manickam, A. (2008). Anti-nutritional Factors.Pp- 212-220. In Biochemical Methods (3rd Ed.). New Age International Publishers.Search in Google Scholar

33. Saikia, P., Sarkar, C. R., & Borua, I. (1999). Chemical composition, antinutritional factors and effect of cooking on nutritional quality of rice bean [Vigna umbellata (Thunb; Ohwi and Ohashi). Food Chemistry, 67(4), 347-352.10.1016/S0308-8146(98)00206-4Search in Google Scholar

34. Segev, A., Badani, H., Galili, L., Hovav, R., Kapulnik, Y., Shomer, I., & Galili, S. (2011). Total phenolic content and antioxidant activity of chickpea (Cicerarietinum L.) as affected by soaking and cooking conditions. Food and Nutrition Sciences, 2(07), 724.Search in Google Scholar

35. Segev, A., Badani, H., Galili, L., Hovav, R., Kapulnik, Y., Shomer, I., & Galili, S. (2012). Effects of baking, roasting and frying on total polyphenols and antioxidant activity in colored chickpea seeds. Food and Nutrition Sciences, 3(3), pp.369-376.10.4236/fns.2012.33053Search in Google Scholar

36. Sharma, P., Gujral, H. S., & Singh, B. (2012). Antioxidant activity of barley as affected by extrusion cooking. Food Chemistry, 131, 1406-1413.10.1016/j.foodchem.2011.10.009Search in Google Scholar

37. Shin, J. A., Heo, Y., Seo, M., Choi, Y., & Lee, K. T. (2016). Effects of cooking methods on the β-carotene levels of selected plant food materials. Food Science and Biotechnology, 25(4), 955-963.10.1007/s10068-016-0156-x604911230263360Search in Google Scholar

38. Siah, S., Wood, J. A., Agboola, S., Konczak, I., & Blanchard, C. L. (2014). Effects of soaking, boiling and autoclaving on the phenolic contents and antioxidant activities of faba beans (Vicia faba L.) differing in seed coat colours. Food Chemistry, 142, 461-468.10.1016/j.foodchem.2013.07.06824001866Search in Google Scholar

39. Sihag, M. K., Sharma, V., Goyal, A., Arora, S., & Singh, A. K. (2015). Effect of domestic processing treatments on iron, β-carotene, phytic acid and polyphenols of pearl millet. Cogent Food & Agriculture, 1(1), 1109171.10.1080/23311932.2015.1109171Search in Google Scholar

40. Sinha, R., & Kawatra, A. (2003). Effect of processing on phytic acid and polyphenol contents of cowpeas [Vignaunguiculata (L) Walp]. Plant Foods for Human Nutrition, 58(3), 1-8.10.1023/B:QUAL.0000040322.01063.d4Search in Google Scholar

41. Sood, M., & Malhotra, S. R. (2002). Effects of processing and cooking on ascorbic acid content of chickpea (Cicer arietinum L) varieties. Journal of the Science of Food and Agriculture, 82(1), 65-68.10.1002/jsfa.1001Search in Google Scholar

42. Sritongtae, B., Sangsukiam, T., Morgan, M. R., & Duangmal, K. (2017). Effect of acid pretreatment and the germination period on the composition and antioxidant activity of rice bean (Vigna umbellata). Food Chemistry, 227, 280-288.10.1016/j.foodchem.2017.01.10328274433Search in Google Scholar

43. Stuart, B. H. (2004). Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken10.1002/0470011149Search in Google Scholar

44. Suryanti, V., Marliyana, S. D. & Putri, H. E. (2016). Effect of germination on antioxidant activity, total phenolics,[Beta]-carotene, ascorbic acid and [alpha]-tocopherol contents of lead tree sprouts (Leucaena leucocephala (lmk.) de Wit). International Food Research Journal, 23(1), p.167.Search in Google Scholar

45. Tajoddin, M., Manohar, S., & Lalitha, J. (2014). Effect of soaking and germination on polyphenol content and polyphenol oxidase activity of mung bean (Phaseolus aureus L.) cultivars differing in seed color. International Journal of Food Properties, 17(4), 782-790.10.1080/10942912.2012.654702Search in Google Scholar

46. Tomer, S., Chauhan, G., Das, A., & Verma, M. R. (2018). Comparative evaluation on phenolic content and antioxidant activity of legume sprouts as affected by various solvents for application in livestock products. International Journal of Current Microbiology and Applied Sciences, 7(5), 3388-3398.10.20546/ijcmas.2018.705.396Search in Google Scholar

47. Xu, B., & Chang, S. K. (2008). Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes. Food Chemistry, 110 (1), 1-13.10.1016/j.foodchem.2008.01.04526050159Search in Google Scholar

48. Yang, H. W., Hsu, C. K., & Yang, Y. F. (2014). Effect of thermal treatments on anti-nutritional factors and antioxidant capabilities in yellow soybeans and green cotyledon small black soybeans. Journal of the Science of Food and Agriculture, 94(9), 1794-1801.10.1002/jsfa.649424282146Search in Google Scholar

49. Yasmin, A., Zeb, A., Khalil, A. W., Paracha, G. M. U. D., & Khattak, A. B. (2008). Effect of processing on anti-nutritional factors of red kidney bean (Phaseolus vulgaris) grains. Food and Bioprocess Technology, 1(4), 415-419.10.1007/s11947-008-0125-3Search in Google Scholar

50. Zhang, B., Deng, Z., Tang, Y., Chen, P. X., Liu, R., Ramdath, D. D., Liu, Q., Hernandez, M., & Tsao, R. (2014). Effect of domestic cooking on carotenoids, tocopherols, fatty acids, phenolics, and antioxidant activities of lentils (Lens culinaris). Journal of Agricultural and Food Chemistry, 62(52), 12585-12594.10.1021/jf504181r25474757Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo