Open Access

The association of gene polymorphisms with milk production and mastitis resistance phenotypic traits in dairy cattle


Cite

Abecasis G.R., Noguchi E., Heinzmann A., Traherne J.A., Bhattacharyya S., Leaves N.I., Anderson G.G., Zhang Y., Lench N.L., Carey A., Cardon L.R., Moffatt M.F. Cookson W.O.C. (2001). Extent and distribution of linkage disequilibrium in three genomic regions. Am. J. Hum. Genet., 68: 191–197. Search in Google Scholar

Aerts J., Piwczyński D., Ghiasi H., Sitkowska B., Kolenda M., Önder H. (2021). Genetic parameters estimation of milking traits in Polish Holstein-Friesians based on automatic milking system data. Animals, 11: 1943. Search in Google Scholar

Andrei S., Pintea A., Bunea A., Groza I., Bogdan L., Ciupe S., Matei S., Crainic D. (2009). Non-enzymatic antioxidants concentration and lipids peroxidation level in milk from cows with subclinical mastitis. Bull. Univ. Agric. Sci. Vet. Med. Cluj. Napoca Vet. Med., 66. Search in Google Scholar

Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M., Rubin G.N., Sherlock G. (2000). Gene ontology: tool for the unification of biology. Nat. Genet., 25: 25–29. Search in Google Scholar

Ashwell M.S., Heyen D.W., Sonstegard T.S., Van Tassel C.P., Da P.M., Ron M., Weller J.I. (2004). Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. J. Dairy Sci., 87: 468–475. Search in Google Scholar

Bagnicka E., Łukaszewicz M., Ådnøy T. (2016). Genetic parameters of somatic cell score and lactose content in goat’s milk. J. Anim. Feed Sci., 25: 210–215. Search in Google Scholar

Brettes J.P., Mathelin C. (2008). Effect dual DeVuyst s androgens sur la glande mammaire. Bull. Cancer, 95: 495–502. Search in Google Scholar

Bruckmaier R.M., Ontsouka C.E., Blum J.W. (2004). Fractionized milk composition in dairy cows with subclinical mastitis. Vet. Med. Czech, 49: 283–290. Search in Google Scholar

Brzóska F., Kowalski Z.M., Osięgłowski S., Strzetelski J. (2014). IZ PIB-INRA Standard of ruminants’ feeding: nutrient value of French and domestic fodders for ruminants (in Polish), Strzetelski J. (ed.). Foundation IZ PIB Patronus Animalium, Kraków, Poland. Busillo J.M., Benovic J.L. (2007). Regulation of CXCR4 signaling. Biochim. Biophys. Acta, 1768: 952–963. Search in Google Scholar

Carlen E., Strandberg E., Roth A. (2005). Genetic parameters for clinical mastitis, somatic cell score, and production in the first three lactations of Swedish Holstein cows. J. Dairy Sci., 87: 3062–3070. Search in Google Scholar

Cases S., Smith S.J., Zheng Y.W., Myyers H.M., Lear S.R., Sande E., Novak S., Collins C., Welch C.B., Lusis A.J., Erickson S.K. Farese R.V. (1998). Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. PNAS USA, 95: 13018–13023. Search in Google Scholar

Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M., Lee J.J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4: 7. Search in Google Scholar

Chen X., Cheng Z., Zhang S., Werling D., Wathes D.C. (2015). Combining genome wide association studies and differential gene expression data analyses identifies candidate genes affecting mastitis caused by two different pathogens in the dairy cow. Open J. Anim. Sci., 5: 358–393. Search in Google Scholar

Danino Y.M., Even D., Ideses D., Juven-Gershon T. (2015). The core promoter: At the heart of gene expression. BBA-Gene Regul. Mech., 1849: 1116–1131. Search in Google Scholar

Davies G., Genini S., Bishop S.C., Giuffra E. (2009). An assessment of opportunities to dissect host genetic variation in resistance to infectious diseases in livestock. Animal, 3: 415–436. Search in Google Scholar

De la Rosa Reyna X.F., Montoya H.M., Castrellón V.V., Rincón A.M.S., Bracamonte M.P., Vera W.A. (2010). Polymorphisms in the IGF1 gene and their effect on growth traits in Mexican beef cattle. Gen. Mol. Res., 9: 875–883. Search in Google Scholar

De Schepper S., De Ketelaere A., Bannerman D.D., Paape M.J., Peelman L., Burvenich C. (2008). The toll-like receptor-4 (TLR-4) pathway and its possible role in the pathogenesis of Escherichia coli mastitis in dairy cattle. Vet. Res., 39: 5. Search in Google Scholar

Dunning A.M., Durocher F., Healey C.S., Teare M.D., McBride S.E., Carlomagno F., Xu C-F., Dawson E., Rhodes S., Ueda S., Lai E., Luben R.N.., Van Rensburg E.J., Mannermaa A., Kataja V., Rennart G., Dunham I., Purvis I., Easton D., Ponder B.A.J. (2000). The extent of linkage disequilibrium in four populations with distinct demographic histories. Am. J. Hum. Genet., 67: 1544–1554. Search in Google Scholar

Fang Z.H., Pausch H. (2019). Multi-trait meta-analyses reveal 25 quantitative trait loci for economically important traits in Brown Swiss cattle. BMC Genomics, 20: 695. Search in Google Scholar

Hagnestam-Nielsen C., Østergaard S. (2009). Economic impact of clinical mastitis in a dairy herd assessed by stochastic simulation using different methods to model yield losses. Animal, 3: 315–328. Search in Google Scholar

Jiang J., Ma L., Prakapenka D., Van Raden P.M., Cole J.B., Da Y. (2019). A large-scale genome-wide association study in U.S. Holstein cattle. Front. Genet., 10: 412. Search in Google Scholar

Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 44: D457–D462. Search in Google Scholar

Kawai T., Akira S. (2005). Pathogen recognition with toll-like receptors. Curr. Opin. Immunol., 17: 338–344. Search in Google Scholar

Kosciuczuk E.M., Lisowski P., Jarczak J., Majewska A., Rzewuska M., Zwierzchowski L., Bagnicka E. (2017). Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma. BMC Vet. Res., 13: 1–12. Search in Google Scholar

Krag K., Poulsen N.A., Larsen M.K., Larsen L.B., Jans L.L., Buitenhuis B. (2013). Genetic parameters for milk fatty acids in Danish Holstein cattle based on SNP markers using a Bayesian approach. BMC Genet., 14: 1471–2156. Search in Google Scholar

Kruglyak L. (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet., 22: 139–144. Search in Google Scholar

Liebe A., Shams D. (1998). Growth factors in milk: interrelationships with somatic cell count. J. Dairy Res., 65: 93–100. Search in Google Scholar

Lü A., Hu X., Chen H., Dong Y., Zhang Y., Wang X. (2011). Novel SNPs of the bovine PRLR gene associated with milk production traits. Biochem. Genet., 49: 177–189. Search in Google Scholar

Lucy M. (2008). Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: Implications for post-partum nutrition and reproduction. Reprod. Domest. Anim., 43: 31–39. Search in Google Scholar

Madsen P., Jensen J. (2013). A user’s guide to DMU – a package for analysing multivariate mixed models. Version 6; release 5.2. Search in Google Scholar

Marogna G., Rolesu S., Lollai S., Tola S., Leori G. (2010). Clinical findings in sheep farms affected by recurrent bacterial mastitis. Small Rumin. Res., 88: 119–125. Search in Google Scholar

Maxa J., Neuditschko M., Russ I., Förster M., Medugorac I. (2012). Genome-wide association mapping of milk production traits in Braunvieh cattle. J. Dairy Sci., 92: 5357–5364. Search in Google Scholar

McRae A.F., McEwan J.C., Dodds K.G., Wilson T., Crawford A.M., Slate J. (2002). Linkage disequilibrium in domestic sheep. Genetics, 160: 1113–1122. Search in Google Scholar

Meredith B.K., Berry D.P., Kearney F., Finlay E.K., Fahey A.G., Bradley D.G., Lynn D.J. (2013). A genome-wide association study for somatic cell score using the Illumina high-density bovine beadchip identifies several novel QTL potentially related to mastitis susceptibility. Front. Genet., 4: 229. Search in Google Scholar

Methodology of calculating the gross margin for agricultural production activity (in accordance with the standards of the European Union (in Polish). Institute of Agricultural and Food Economics-National Research Institute (IERiGŻ), Warszawa, 1999. Search in Google Scholar

Meuwissen T.H.E., Karlsen A., Lien S., Olsaker I., Goddard M.E. (2002). Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics, 161: 373–379. Search in Google Scholar

NCBI-1, National Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov, access May 2019. Search in Google Scholar

NCBI-2, National Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov/genome/?term=LOC104972477, access December 14, 2021. Search in Google Scholar

Oprządek J., Sender G., Pawlik A., Łukaszewicz M. (2015). Locus BoLA-DRB3 is just an ordinary site of the polygene when explaining genetic variance of somatic cell count and milk yield. J. Dairy Res., 82: 449–452. Search in Google Scholar

Ptak E., Brzozowski P., Jagusiak W., Zdziarski K. (2007). Genetic parameters for somatic cell score for Polish Black-and-White cattle estimated with a random regression model. J. Anim. Feed. Sci., 16: 357–369. Search in Google Scholar

Rzewuska K., Strabel T. (2013). Genetic parameters for milk urea concentration and milk traits in Polish Holstein-Friesian cows. J. Appl. Genet., 54: 473–482. Search in Google Scholar

Sender G., Korwin-Kossakowska A., Pawlik A., Hammed K., Oprządek J. (2013). Genetic basis of mastitis resistance in dairy cattle – a review. Ann. Anim. Sci., 13: 663–673. Search in Google Scholar

Shao Y.W., Wood G.A., Lu J., Tang Q.L., Liu J., Molyneux S., Chen Y., Fang H., Adissu H., McKee T., Waterhouse P., Khokha R. (2019). Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma. Oncogene, 38: 291–298. Search in Google Scholar

Skarżyńska A. (2012). The impact of the milk yield of cows on the profitability of milk production (in Polish). Zagadnienia Ekonomiki Rolnej (Probl. Agricult. Econom.), 330: 90–111. Search in Google Scholar

Sordillo L.M. (2005). Factors affecting mammary gland immunity and mastitis susceptibility. Livest. Prod. Sci., 98: 89–99. Search in Google Scholar

Taillon-Miller P., Bauer-Sardiña I., Saccone N.L., Putzel J., Laitinen T., Cao A., Kere J., Pilia G., Rice J.P., Kwok P-Y. (2000). Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat. Genet., 25: 324–328. Search in Google Scholar

UniProt Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic acids research, 47: D506–D515. https://www.uniprot.org/uniprot/Q15700, access, December 15, 2021. Search in Google Scholar

Wang Y., Chen T., Han C., He D., Liu H., An H., Cai Z., Cao X. (2007). Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood, 110: 962–971. Search in Google Scholar

Weiner C.M., Smirnova N., Webb B.T., Van Campen H., Hansen T.R. (2012). Interferon stimulated genes, CXCR4 and immune cell responses in peripheral blood mononuclear cells infected with bovine viral diarrhea virus. Res. Vet. Sci., 93: 1081–1088. Search in Google Scholar

Xia J.H., Wei G.H. (2019). Enhancer dysfunction in 3D genome and disease. Cells, 8: 1281. Search in Google Scholar

Yang J., Liu X., Wang D., Ning C., Wang H., Zhang Q., Jiang L. (2017). Functional validation of GPIHBP1 and identification of a functional mutation in GPIHBP1 for milk fat traits in dairy cattle. Sci. Rep., 7: 8546. Search in Google Scholar

Yazgan K., Makulska J., Węglarz A., Ptak E., Gierdziewicz M. (2010). Genetic relationship between milk dry matter and other milk traits in extended lactations of Polish Holstein cows. Czech J. Anim. Sci., 55: 91–104. Search in Google Scholar

Yuan Z., Li J., Li J., Gao X., Xu S. (2013). SNPs identification and its correlation analysis with milk somatic cell score in bovine MBL1 gene. Mol. Biol. Rep., 40: 7–12. Search in Google Scholar

Zhu J., Shang Y., Zhang M. (2016). Mechanistic basis of MAGUKorganized complexes in synaptic development and signalling. Nat. Rev. Neurosci., 17: 209–223. Search in Google Scholar

Zhuang R.J., Bai X.X., Liu W. (2019). MicroRNA-23a depletion promotes apoptosis of ovarian cancer stem cell and inhibits cell migration by targeting DLG2. Cancer Biol. Ther., 20: 897–911. Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine