1. bookVolume 20 (2020): Issue 1 (January 2020)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
Open Access

From Waste to Sustainable Feed Material: The Effect of Hermetia Illucens Oil on the Growth Performance, Nutrient Digestibility, and Gastrointestinal Tract Morphometry of Broiler Chickens

Published Online: 28 Jan 2020
Volume & Issue: Volume 20 (2020) - Issue 1 (January 2020)
Page range: 157 - 177
Received: 01 Jul 2019
Accepted: 23 Sep 2019
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

Abduh M.Y., Jamilah M., Istiandari P., Manurung S., Manurung R. (2017). Biocon-version of rubber seeds to produce protein and oil-rich biomass using black soldier fly larva assisted by microbes. J. Entomol. Zool. Stud., 5: 591–597.Search in Google Scholar

Alifian M.D., Sholikin M.M., Evvyernie D., Nahrowi (2019). Potential fatty acid composition of Hermetia illucens oil reared on different substrates. Proc. 9th Annual Basic Science International Conference (BaSUC) IOP Conf. Series: Mat. Sci. Eng., 546: 062002.Search in Google Scholar

AOAC (2005). Agricultural chemicals; contaminants; drugs. Official Methods of Analysis, vol. 1. AOAC, International, Gaithersburg, Maryland.Search in Google Scholar

Bentley M.D., Leonard D.E., Reynolds E.K., Leach S., Beck A.B., Murakoshi I. (1984). Lupine alkaloids as larval feeding deterrents for spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Ann. Entomol. Soc. Am., 77: 398–400.Search in Google Scholar

Benzertiha A., Kierończyk B., Rawski M., Kołodziejskie P., Bryszak M., Józefiak D. (2019). Insect oil as an alternative to palm oil and poultry fat in broiler chicken nutrition. Animals, 9: 116.Search in Google Scholar

Bulak P., Polakowski C., Nowak K., Waśko A., Wiącek D., Bieganowski A. (2018). Hermetia illucens as a new and promising species for use in entomoremediation. Sci. Total Environ., 633: 912–919.Search in Google Scholar

Czekała W. (2017). Concept of IN-OIL project based on bioconversion of by-products from food processing industry. J. Ecol. Eng., 18: 180–185.Search in Google Scholar

Dalle Zotte A., Cullere M., Martins C., Alves S.P., Freire J.P.B., Falcão-e-Cunha L., Bessa R.J.B. (2018). Incorporation of Black Soldier Fly (Hermetia illucens L.) larvae fat or extruded linseed in diets of growing rabbits and their effects on meat quality traits including detailed fatty acid composition. Meat Sci., 146: 50–58.Search in Google Scholar

Danieli P.P., Lussiana C., Gasco L., Amici A., Ronchi B. (2019). The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals, 9: 178.Search in Google Scholar

De Marco M., Martinez S., Hernandez F., Madrid J., Gai F., Rotolo L., Belforti M., Bergero D., Katz H., Dabbou S., Kovitvadhi A., Zoccarato I., Gasco L., Schiavone A. (2015). Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Tech., 209: 211–218.Search in Google Scholar

De Verdal H., Mingnon-Grasteau S., Jeulin C., Le Bihan-Ducal E., Leconte M., Mallte S., Martin C., Narcy A. (2010). Digestive tract measurements and histological adaptation in broiler lines divergently selected for digestive efficiency. Poultry Sci., 89: 1955–1961.Search in Google Scholar

Diener S., Zurbrügg C., Tockner K. (2009). Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manage. Res., 27: 603–610.Search in Google Scholar

Dreassi E., Cito A., Zanfini A., Materozzi L., Botta M., Francardi V., (2016). Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids, 52: 285–294.Search in Google Scholar

Dumas A., Raggi T., Barkhouse J., Lewis E., Weltzien E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492: 24–34.Search in Google Scholar

EFSA (2015). Scientific opinion on a risk profile related to production and consumption of insects as food and feed. EFSA J., 13: 4257–4317.Search in Google Scholar

Hill F., Anderson D. (1958). Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr., 64: 587–603.Search in Google Scholar

Inagaki S., Yamashita O. (1986). Metabolic shift from lipogenesis to glycogenesis in the last instar larval fat body of the silkworm, Bombyx mori. Insect Biochem.,16: 327–331.Search in Google Scholar

Jackowski J., Hurej M., Rój E., Poplonski J., Kosny L., Huszcza E. (2015). Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests. B. Entomol. Res., 105: 456–461.Search in Google Scholar

Jayaprakash G., Sathiyabarathi M., Arokia-Robert M. (2016). Insects – a natural source for poultry nutrition. Int. J. Sci. Environ. Technol., 5: 733–736.Search in Google Scholar

Józefiak A., Kierończyk B., Rawski M., Mazurkiewicz J., Benzertiha A., Gobbi P., Nogales-Mérida S., Świątkiewicz S., Józefiak D. (2018). Full-fat insect meals as feed additive – the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J. Anim. Feed Sci., 27: 131–139.Search in Google Scholar

Józefiak D., Józefiak A., Kierończyk B., Rawski M., Świątkiewicz S., Długosz J., Engberg R.M. (2016). Insects – a natural nutrient source for poultry – a review. Ann. Anim. Sci., 16: 297–313.Search in Google Scholar

Jucker C., Erba D., Leonardi G.M., Lupi D., Savoldelli S. (2017). Assessment of vegetable and fruit substrates as potential rearing media for Hermetia illucens (Diptera: Stratiomyidae) larvae. Environ. Entomol., 46: 1415–1423.Search in Google Scholar

Kaczmarek S., Hejdysz M., Kubiś M., Kasprowicz-Potocka M., Rutkowski A. (2016). The nutritional value of yellow lupin (Lupinus luteus L.) for broilers. Anim. Feed Sci. Tech., 222: 43–53.Search in Google Scholar

Kapell D., Hocking P., Glover P., Kremer V., Avendaño S. (2017). Genetic basis of leg health and its relationship with body weight in purebred turkey lines. Poultry Sci., 96: 1553–1562.Search in Google Scholar

Kierończyk B., Rawski M., Pawełczyk P., Różyńska J., Golusik J., Mikołajczak Z., Józefiak D. (2018 a). Do insects smell attractive to dogs? A comparison of dog reactions to insects and commercial feed aromas – a preliminary study. Ann. Anim. Sci., 18: 795–800.10.2478/aoas-2018-0012Search in Google Scholar

Kierończyk B., Rawski M., Józefiak A., Mazurkiewicz J., Świątkiewicz S., Siwek M., Bednarczyk M., Szumacher-Strabel M., Cieślak A., Benzertiha A., Jó żefiak D. (2018 b). Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech., 240: 170–183.10.1016/j.anifeedsci.2018.04.002Search in Google Scholar

Kosson R., Felczyński K., Szwejda-Grzybowska J., Grzegorzewska M., Tuccio L., Agati G., Kaniszewski S. (2017). Nutritive value of marketable heads and outer leaves of white head cabbage cultivated at different nitrogen rates. Acta Agr. Scand. Section B-S. P., 67: 524–533.Search in Google Scholar

Kroeckel S., Harjes A.G.E., Roth I., Katz H., Wuertz S., Susenbeth A., Schulz C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute – growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364: 345–352.Search in Google Scholar

Li Q., Zheng L., Cai H., Garza E., Yu Z., Zhou S. (2011 a). From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel, 90: 1545–1548.10.1016/j.fuel.2010.11.016Search in Google Scholar

Li Q., Zheng L., Qiu N., Cai H., Tomberlin J.K., Yu Z. (2011 b). Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manage., 31: 1316–1320.10.1016/j.wasman.2011.01.00521367596Search in Google Scholar

Li S., Ji H., Zhang B., Tian J., Zhou J., Yu H. (2016). Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 465: 43–52.Search in Google Scholar

Li W., Mingsun L., Zheng L., Liu Y., Zhang Y., Yu Z., Ma Z., Li Q. (2015). Simultaneous utilization of glucose and xylose for lipid accumulation in black soldier fly. Biotechnol. Biofuels, 8: 117.Search in Google Scholar

Lock E.R., Arsiwalla T., Waagbø R. (2016). Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquacult. Nutr., 22: 1202–1213.Search in Google Scholar

Makkar H.P., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Tech., 197: 1–33.Search in Google Scholar

Manurung R., Supriatna A., Esyanthi R.R., Putra R.E. (2016). Bioconversion of rice straw waste by black soldier fly larvae (Hermetia illucens L.): optimal feed rate for biomass production. J. Entomol. Zool. Stud., 4: 1036–1041.Search in Google Scholar

Manzano-Agugliaro F., Sanchez-Muros M.J., Barroso F.G., Martínez-Sánchez A., Rojo S., Pérez-Bañón C. (2012). Insects for biodiesel production. Renew. Sust. Energ. Rev., 16: 3744–3753.Search in Google Scholar

Martínez-Sánchez A., Magana C., Salona M., Rojo S. (2011). First record of Hermetia illucens (Diptera: Stratiomyidae) on human corpses in Iberian Peninsula. Forensic Sci. Int., 206: e76–e78.Search in Google Scholar

Martins C., Cullere M., Dalle Zotte A., Cardoso C., Alves S.P., Bessa R.J.B., Freire J.P.B., Falcãoe-Cunha L. (2018). Incorporation of two levels of black soldier fly (Hermetia illucens L.) larvae fat or extruded linseed in diets of growing rabbits: effects on growth performance and diet digestibility. Czech J. Anim. Sci., 63: 356–362.Search in Google Scholar

Meneguz M., Schiavone A., Gai F., Dama A., Lussiana C., Renna M., Gasco L. (2018). Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agr., 98: 5776–5784.Search in Google Scholar

Mentang F., Maita M., Ushio H., Ohshima T. (2011). Efficacy of silkworm (Bombyx mori L.) chrysalis oil as a lipid source in adult Wistar rats. Food Chem., 127: 899–904.Search in Google Scholar

Mutafela R.N., Mirata M., Aid G., Olsson M., Hogland W. (2018). Organic waste management via Hermetia illucens: a mini review. Linnaeus Eco-Tech. Proc. 11th International conference on establishment of cooperation between companies and institutions in the Nordic countries, the Baltic Sea region and the world, 19–21.11.2018, Kalmar.Search in Google Scholar

Myers W., Ludden P., Nayigihugu V., Hess B. (2004). Technical Note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci., 82: 179–183.Search in Google Scholar

National Research Council (1994). Nutrient Requirements of Poultry. 9th Rev. Ed. National Academy Press. Washington DC. USA.Search in Google Scholar

Nenaah G. (2011). Individual and synergistic toxicity of solanaceous glycoalkaloids against two coleopteran stored-product insects. J. Pest Sci., 84: 77–86.Search in Google Scholar

Newton L., Sheppard C., Watson D.W., Burtle G., Dove R. (2005). Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. In: Animal and Poultry Waste Management Center, Williams M. (ed.). North Carolina State University, Raleigh, NC 17, pp. 1–17.Search in Google Scholar

Nguyen D., Lee K., Mohammadigheisar M., Kim I. (2018 a). Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poultry Sci., 97: 4351–4358.10.3382/ps/pey33930165535Search in Google Scholar

Nguyen H.C., Liang S.H.L., Li S.Y., Su C.H., Chien C.C., Chen Y.J., Huong D.T.M. (2018 b). Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. J. Taiwan Inst. Chem. E., 85: 165–169.10.1016/j.jtice.2018.01.035Search in Google Scholar

Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A. (2018). Insect meals in fish nutrition. Rev. Aquacult., 1–24, doi: 10.1111/raq.12281.10.1111/raq.12281Search in Google Scholar

Purschke B., Stegmann T., Schreiner M., Jäger H. (2017 a). Pilot-scale supercritical CO2 extraction of edible insect oil from Tenebrio molitor L. larvae – Influence of extraction conditions on kinetics, defatting performance and compositional properties. Eur. J. Lipid Sci. Tech., 119: 1600134.10.1002/ejlt.201600134Search in Google Scholar

Purschke B., Scheibelberger R., Axmann S., Adler A., Jäger H. (2017 b). Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit. Contam. A, 34: 1410–1420.10.1080/19440049.2017.129994628278126Search in Google Scholar

Purschke B., Tanzmeister H., Meinlschmidt P., Baumgartner S., Lauter K., Jäger H. (2018). Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Res. Int., 106: 271–279.Search in Google Scholar

Raventós M., Duarte S., Alarcón R. (2002). Application and possibilities of supercritical CO2 extraction in food processing industry: an overview. Rev. Agroquim. Tecnol., 8: 269–284.Search in Google Scholar

Rehman K., Rehman A., Cai M., Zheng L., Xiao X., Samroo A.A., Wang H., Li W., Yu Z., Zhang J. (2017). Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod., 154: 366–373.Search in Google Scholar

Rehman K., Rehman R., Somroo A.A., Cai M., Zheng L., Xiao X., Rehman A., Rehman A., Tomberlin J.K., Yu Z., Zhand J. (2019). Enhanced bioconversion of dairy and chicken manure by the interaction of exogenous bacteria and black soldier fly larvae. J. Environ. Manage., 237: 75–83.Search in Google Scholar

Rumpold B.A., Schlüter O.K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg., 17: 1–11.Search in Google Scholar

Sánchez-Muros M.J., Renteria P., Vizcaino A., Barroso F.G. (2018). Innovative protein sources in shrimp (Litopenaeus vannamei) feeding. Rev. Aquacult., 1–18, doi.org/10.1111/raq.12312.Search in Google Scholar

Sanford L., Domek J., Cantelo W., Kobayashi R., Sinden S. (1996). Mortality of potato leafhopper adults on synthetic diets containing seven glycoalkaloids synthesized in the foliage of various Solanum species. Am. Potato J., 73: 79–88.Search in Google Scholar

Schiavone A., Cullere M., De Marco M., Meneguz M., Biasato I., Bergagna S., Dezzutto D., Gai F., Dabbou S., Gasco L., Dalle Zotte A. (2017). Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci., 16: 1–8.Search in Google Scholar

Schiavone A., Dabbou S., De Marco M., Cullere M., Biasato I., Biasibetti E., Capucchio M.T., Bergagna S., Dezzutto D., Meneguz M., Gai F., Dalle Zotte A., Gasco L. (2018). Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal, 12: 2032–2039.Search in Google Scholar

Short F., Gorton P., Wiseman J., Boorman K. (1996). Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Tech., 59: 215–221.Search in Google Scholar

Sosa D.A.T., Fogliano V. (2017). Potential of insect-derived ingredients for food applications. In: Insect Physiology and Ecology, Shields V.D.C. (ed.). Rijeka, InTech, pp. 215–231.Search in Google Scholar

Spranghers T., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., De Meulenaer B., Michiels J., Eeckhout M., De Clercq P., De Smet S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agr., 97: 2594–2600.Search in Google Scholar

Spranghers T., Michiels J., Vrancx J., Ovyn A., Eeckhout M., De Clercq P., De Smet S. (2018). Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Tech., 235: 33–42.Search in Google Scholar

St-Hilaire S., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., De Meulenaer B., Michiels J., Eeckhout M., De Clercq P., De Smet S. (2007). Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquacul. Soc., 38: 309–313.Search in Google Scholar

Tancharoenrat P., Ravindran V., Zaefarian F., Ravindran G. (2013). Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. Anim. Feed Sci. Tech., 186: 186–192.Search in Google Scholar

Timbermont L., Lanckriet A., Dewulf J., Nollet N., Schwarzer K., Haesebrouck F., Ducatelle R., Van Immerseel F. (2010). Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils. Avian Pathol., 39: 117–121.Search in Google Scholar

Tschirner M., Simon A. (2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed, 1: 249–259.Search in Google Scholar

Tzompa-Sosa D., Yi L., van Valenberg H., Lakemond C. (2019). Four insect oils as food ingredient: physical and chemical characterisation of insect oils obtained by an aqueous oil extraction. J. Insects Food Feed, 5: 279–292.Search in Google Scholar

Woods M.J., Cullere M., Emmenes Van L., Vincenzi S., Pieterse E., Hoffman L.C., Dalle Zotte A. (2019). Hermetia illucens larvae reared on different substrates in broiler quail diets: effect on apparent digestibility, feed-choice and growth performance. J. Insects Food Feed, 5: 89–98.Search in Google Scholar

Zeiger K., Popp J., Becker A., Hankel J., Visscher C., Klein G., Meemken D. (2017). Lauric acid as feed additive – an approach to reducing Campylobacter spp. in broiler meat. PloS one, 12: e0175693.Search in Google Scholar

Zhao X., Vázquez-Gutiérrez J.L., Johansson D.P., Landberg R., Langton M. (2016). Yellow mealworm protein for food purposes – Extraction and functional properties. PLoS One, 11: e0147791.Search in Google Scholar

Ziegler R. (2003). Biochemie und Stoffwechsel. In: Lehrbuch der Entomologie. 2. Auflage, Spektrum Akademischer Verlag, Dettner K., Peters W. (eds.). München, Germany, pp. 75–89.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo