[Abduh M.Y., Jamilah M., Istiandari P., Manurung S., Manurung R. (2017). Biocon-version of rubber seeds to produce protein and oil-rich biomass using black soldier fly larva assisted by microbes. J. Entomol. Zool. Stud., 5: 591–597.]Search in Google Scholar
[Alifian M.D., Sholikin M.M., Evvyernie D., Nahrowi (2019). Potential fatty acid composition of Hermetia illucens oil reared on different substrates. Proc. 9th Annual Basic Science International Conference (BaSUC) IOP Conf. Series: Mat. Sci. Eng., 546: 062002.]Search in Google Scholar
[AOAC (2005). Agricultural chemicals; contaminants; drugs. Official Methods of Analysis, vol. 1. AOAC, International, Gaithersburg, Maryland.]Search in Google Scholar
[Bentley M.D., Leonard D.E., Reynolds E.K., Leach S., Beck A.B., Murakoshi I. (1984). Lupine alkaloids as larval feeding deterrents for spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Ann. Entomol. Soc. Am., 77: 398–400.]Search in Google Scholar
[Benzertiha A., Kierończyk B., Rawski M., Kołodziejskie P., Bryszak M., Józefiak D. (2019). Insect oil as an alternative to palm oil and poultry fat in broiler chicken nutrition. Animals, 9: 116.]Search in Google Scholar
[Bulak P., Polakowski C., Nowak K., Waśko A., Wiącek D., Bieganowski A. (2018). Hermetia illucens as a new and promising species for use in entomoremediation. Sci. Total Environ., 633: 912–919.]Search in Google Scholar
[Czekała W. (2017). Concept of IN-OIL project based on bioconversion of by-products from food processing industry. J. Ecol. Eng., 18: 180–185.]Search in Google Scholar
[Dalle Zotte A., Cullere M., Martins C., Alves S.P., Freire J.P.B., Falcão-e-Cunha L., Bessa R.J.B. (2018). Incorporation of Black Soldier Fly (Hermetia illucens L.) larvae fat or extruded linseed in diets of growing rabbits and their effects on meat quality traits including detailed fatty acid composition. Meat Sci., 146: 50–58.]Search in Google Scholar
[Danieli P.P., Lussiana C., Gasco L., Amici A., Ronchi B. (2019). The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals, 9: 178.]Search in Google Scholar
[De Marco M., Martinez S., Hernandez F., Madrid J., Gai F., Rotolo L., Belforti M., Bergero D., Katz H., Dabbou S., Kovitvadhi A., Zoccarato I., Gasco L., Schiavone A. (2015). Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Tech., 209: 211–218.]Search in Google Scholar
[De Verdal H., Mingnon-Grasteau S., Jeulin C., Le Bihan-Ducal E., Leconte M., Mallte S., Martin C., Narcy A. (2010). Digestive tract measurements and histological adaptation in broiler lines divergently selected for digestive efficiency. Poultry Sci., 89: 1955–1961.]Search in Google Scholar
[Diener S., Zurbrügg C., Tockner K. (2009). Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manage. Res., 27: 603–610.]Search in Google Scholar
[Dreassi E., Cito A., Zanfini A., Materozzi L., Botta M., Francardi V., (2016). Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids, 52: 285–294.]Search in Google Scholar
[Dumas A., Raggi T., Barkhouse J., Lewis E., Weltzien E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492: 24–34.]Search in Google Scholar
[EFSA (2015). Scientific opinion on a risk profile related to production and consumption of insects as food and feed. EFSA J., 13: 4257–4317.]Search in Google Scholar
[Hill F., Anderson D. (1958). Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr., 64: 587–603.]Search in Google Scholar
[Inagaki S., Yamashita O. (1986). Metabolic shift from lipogenesis to glycogenesis in the last instar larval fat body of the silkworm, Bombyx mori. Insect Biochem.,16: 327–331.]Search in Google Scholar
[Jackowski J., Hurej M., Rój E., Poplonski J., Kosny L., Huszcza E. (2015). Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests. B. Entomol. Res., 105: 456–461.]Search in Google Scholar
[Jayaprakash G., Sathiyabarathi M., Arokia-Robert M. (2016). Insects – a natural source for poultry nutrition. Int. J. Sci. Environ. Technol., 5: 733–736.]Search in Google Scholar
[Józefiak A., Kierończyk B., Rawski M., Mazurkiewicz J., Benzertiha A., Gobbi P., Nogales-Mérida S., Świątkiewicz S., Józefiak D. (2018). Full-fat insect meals as feed additive – the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J. Anim. Feed Sci., 27: 131–139.]Search in Google Scholar
[Józefiak D., Józefiak A., Kierończyk B., Rawski M., Świątkiewicz S., Długosz J., Engberg R.M. (2016). Insects – a natural nutrient source for poultry – a review. Ann. Anim. Sci., 16: 297–313.]Search in Google Scholar
[Jucker C., Erba D., Leonardi G.M., Lupi D., Savoldelli S. (2017). Assessment of vegetable and fruit substrates as potential rearing media for Hermetia illucens (Diptera: Stratiomyidae) larvae. Environ. Entomol., 46: 1415–1423.]Search in Google Scholar
[Kaczmarek S., Hejdysz M., Kubiś M., Kasprowicz-Potocka M., Rutkowski A. (2016). The nutritional value of yellow lupin (Lupinus luteus L.) for broilers. Anim. Feed Sci. Tech., 222: 43–53.]Search in Google Scholar
[Kapell D., Hocking P., Glover P., Kremer V., Avendaño S. (2017). Genetic basis of leg health and its relationship with body weight in purebred turkey lines. Poultry Sci., 96: 1553–1562.]Search in Google Scholar
[Kierończyk B., Rawski M., Pawełczyk P., Różyńska J., Golusik J., Mikołajczak Z., Józefiak D. (2018 a). Do insects smell attractive to dogs? A comparison of dog reactions to insects and commercial feed aromas – a preliminary study. Ann. Anim. Sci., 18: 795–800.10.2478/aoas-2018-0012]Search in Google Scholar
[Kierończyk B., Rawski M., Józefiak A., Mazurkiewicz J., Świątkiewicz S., Siwek M., Bednarczyk M., Szumacher-Strabel M., Cieślak A., Benzertiha A., Jó żefiak D. (2018 b). Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech., 240: 170–183.10.1016/j.anifeedsci.2018.04.002]Search in Google Scholar
[Kosson R., Felczyński K., Szwejda-Grzybowska J., Grzegorzewska M., Tuccio L., Agati G., Kaniszewski S. (2017). Nutritive value of marketable heads and outer leaves of white head cabbage cultivated at different nitrogen rates. Acta Agr. Scand. Section B-S. P., 67: 524–533.]Search in Google Scholar
[Kroeckel S., Harjes A.G.E., Roth I., Katz H., Wuertz S., Susenbeth A., Schulz C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute – growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364: 345–352.]Search in Google Scholar
[Li Q., Zheng L., Cai H., Garza E., Yu Z., Zhou S. (2011 a). From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel, 90: 1545–1548.10.1016/j.fuel.2010.11.016]Search in Google Scholar
[Li Q., Zheng L., Qiu N., Cai H., Tomberlin J.K., Yu Z. (2011 b). Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manage., 31: 1316–1320.10.1016/j.wasman.2011.01.00521367596]Search in Google Scholar
[Li S., Ji H., Zhang B., Tian J., Zhou J., Yu H. (2016). Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 465: 43–52.]Search in Google Scholar
[Li W., Mingsun L., Zheng L., Liu Y., Zhang Y., Yu Z., Ma Z., Li Q. (2015). Simultaneous utilization of glucose and xylose for lipid accumulation in black soldier fly. Biotechnol. Biofuels, 8: 117.]Search in Google Scholar
[Lock E.R., Arsiwalla T., Waagbø R. (2016). Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquacult. Nutr., 22: 1202–1213.]Search in Google Scholar
[Makkar H.P., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Tech., 197: 1–33.]Search in Google Scholar
[Manurung R., Supriatna A., Esyanthi R.R., Putra R.E. (2016). Bioconversion of rice straw waste by black soldier fly larvae (Hermetia illucens L.): optimal feed rate for biomass production. J. Entomol. Zool. Stud., 4: 1036–1041.]Search in Google Scholar
[Manzano-Agugliaro F., Sanchez-Muros M.J., Barroso F.G., Martínez-Sánchez A., Rojo S., Pérez-Bañón C. (2012). Insects for biodiesel production. Renew. Sust. Energ. Rev., 16: 3744–3753.]Search in Google Scholar
[Martínez-Sánchez A., Magana C., Salona M., Rojo S. (2011). First record of Hermetia illucens (Diptera: Stratiomyidae) on human corpses in Iberian Peninsula. Forensic Sci. Int., 206: e76–e78.]Search in Google Scholar
[Martins C., Cullere M., Dalle Zotte A., Cardoso C., Alves S.P., Bessa R.J.B., Freire J.P.B., Falcãoe-Cunha L. (2018). Incorporation of two levels of black soldier fly (Hermetia illucens L.) larvae fat or extruded linseed in diets of growing rabbits: effects on growth performance and diet digestibility. Czech J. Anim. Sci., 63: 356–362.]Search in Google Scholar
[Meneguz M., Schiavone A., Gai F., Dama A., Lussiana C., Renna M., Gasco L. (2018). Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agr., 98: 5776–5784.]Search in Google Scholar
[Mentang F., Maita M., Ushio H., Ohshima T. (2011). Efficacy of silkworm (Bombyx mori L.) chrysalis oil as a lipid source in adult Wistar rats. Food Chem., 127: 899–904.]Search in Google Scholar
[Mutafela R.N., Mirata M., Aid G., Olsson M., Hogland W. (2018). Organic waste management via Hermetia illucens: a mini review. Linnaeus Eco-Tech. Proc. 11th International conference on establishment of cooperation between companies and institutions in the Nordic countries, the Baltic Sea region and the world, 19–21.11.2018, Kalmar.]Search in Google Scholar
[Myers W., Ludden P., Nayigihugu V., Hess B. (2004). Technical Note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci., 82: 179–183.]Search in Google Scholar
[National Research Council (1994). Nutrient Requirements of Poultry. 9th Rev. Ed. National Academy Press. Washington DC. USA.]Search in Google Scholar
[Nenaah G. (2011). Individual and synergistic toxicity of solanaceous glycoalkaloids against two coleopteran stored-product insects. J. Pest Sci., 84: 77–86.]Search in Google Scholar
[Newton L., Sheppard C., Watson D.W., Burtle G., Dove R. (2005). Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. In: Animal and Poultry Waste Management Center, Williams M. (ed.). North Carolina State University, Raleigh, NC 17, pp. 1–17.]Search in Google Scholar
[Nguyen D., Lee K., Mohammadigheisar M., Kim I. (2018 a). Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poultry Sci., 97: 4351–4358.10.3382/ps/pey33930165535]Search in Google Scholar
[Nguyen H.C., Liang S.H.L., Li S.Y., Su C.H., Chien C.C., Chen Y.J., Huong D.T.M. (2018 b). Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. J. Taiwan Inst. Chem. E., 85: 165–169.10.1016/j.jtice.2018.01.035]Search in Google Scholar
[Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A. (2018). Insect meals in fish nutrition. Rev. Aquacult., 1–24, doi: 10.1111/raq.12281.10.1111/raq.12281]Search in Google Scholar
[Purschke B., Stegmann T., Schreiner M., Jäger H. (2017 a). Pilot-scale supercritical CO2 extraction of edible insect oil from Tenebrio molitor L. larvae – Influence of extraction conditions on kinetics, defatting performance and compositional properties. Eur. J. Lipid Sci. Tech., 119: 1600134.10.1002/ejlt.201600134]Search in Google Scholar
[Purschke B., Scheibelberger R., Axmann S., Adler A., Jäger H. (2017 b). Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit. Contam. A, 34: 1410–1420.10.1080/19440049.2017.129994628278126]Search in Google Scholar
[Purschke B., Tanzmeister H., Meinlschmidt P., Baumgartner S., Lauter K., Jäger H. (2018). Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Res. Int., 106: 271–279.]Search in Google Scholar
[Raventós M., Duarte S., Alarcón R. (2002). Application and possibilities of supercritical CO2 extraction in food processing industry: an overview. Rev. Agroquim. Tecnol., 8: 269–284.]Search in Google Scholar
[Rehman K., Rehman A., Cai M., Zheng L., Xiao X., Samroo A.A., Wang H., Li W., Yu Z., Zhang J. (2017). Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod., 154: 366–373.]Search in Google Scholar
[Rehman K., Rehman R., Somroo A.A., Cai M., Zheng L., Xiao X., Rehman A., Rehman A., Tomberlin J.K., Yu Z., Zhand J. (2019). Enhanced bioconversion of dairy and chicken manure by the interaction of exogenous bacteria and black soldier fly larvae. J. Environ. Manage., 237: 75–83.]Search in Google Scholar
[Rumpold B.A., Schlüter O.K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg., 17: 1–11.]Search in Google Scholar
[Sánchez-Muros M.J., Renteria P., Vizcaino A., Barroso F.G. (2018). Innovative protein sources in shrimp (Litopenaeus vannamei) feeding. Rev. Aquacult., 1–18, doi.org/10.1111/raq.12312.]Search in Google Scholar
[Sanford L., Domek J., Cantelo W., Kobayashi R., Sinden S. (1996). Mortality of potato leafhopper adults on synthetic diets containing seven glycoalkaloids synthesized in the foliage of various Solanum species. Am. Potato J., 73: 79–88.]Search in Google Scholar
[Schiavone A., Cullere M., De Marco M., Meneguz M., Biasato I., Bergagna S., Dezzutto D., Gai F., Dabbou S., Gasco L., Dalle Zotte A. (2017). Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci., 16: 1–8.]Search in Google Scholar
[Schiavone A., Dabbou S., De Marco M., Cullere M., Biasato I., Biasibetti E., Capucchio M.T., Bergagna S., Dezzutto D., Meneguz M., Gai F., Dalle Zotte A., Gasco L. (2018). Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal, 12: 2032–2039.]Search in Google Scholar
[Short F., Gorton P., Wiseman J., Boorman K. (1996). Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Tech., 59: 215–221.]Search in Google Scholar
[Sosa D.A.T., Fogliano V. (2017). Potential of insect-derived ingredients for food applications. In: Insect Physiology and Ecology, Shields V.D.C. (ed.). Rijeka, InTech, pp. 215–231.]Search in Google Scholar
[Spranghers T., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., De Meulenaer B., Michiels J., Eeckhout M., De Clercq P., De Smet S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agr., 97: 2594–2600.]Search in Google Scholar
[Spranghers T., Michiels J., Vrancx J., Ovyn A., Eeckhout M., De Clercq P., De Smet S. (2018). Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Tech., 235: 33–42.]Search in Google Scholar
[St-Hilaire S., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., De Meulenaer B., Michiels J., Eeckhout M., De Clercq P., De Smet S. (2007). Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquacul. Soc., 38: 309–313.]Search in Google Scholar
[Tancharoenrat P., Ravindran V., Zaefarian F., Ravindran G. (2013). Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. Anim. Feed Sci. Tech., 186: 186–192.]Search in Google Scholar
[Timbermont L., Lanckriet A., Dewulf J., Nollet N., Schwarzer K., Haesebrouck F., Ducatelle R., Van Immerseel F. (2010). Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils. Avian Pathol., 39: 117–121.]Search in Google Scholar
[Tschirner M., Simon A. (2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed, 1: 249–259.]Search in Google Scholar
[Tzompa-Sosa D., Yi L., van Valenberg H., Lakemond C. (2019). Four insect oils as food ingredient: physical and chemical characterisation of insect oils obtained by an aqueous oil extraction. J. Insects Food Feed, 5: 279–292.]Search in Google Scholar
[Woods M.J., Cullere M., Emmenes Van L., Vincenzi S., Pieterse E., Hoffman L.C., Dalle Zotte A. (2019). Hermetia illucens larvae reared on different substrates in broiler quail diets: effect on apparent digestibility, feed-choice and growth performance. J. Insects Food Feed, 5: 89–98.]Search in Google Scholar
[Zeiger K., Popp J., Becker A., Hankel J., Visscher C., Klein G., Meemken D. (2017). Lauric acid as feed additive – an approach to reducing Campylobacter spp. in broiler meat. PloS one, 12: e0175693.]Search in Google Scholar
[Zhao X., Vázquez-Gutiérrez J.L., Johansson D.P., Landberg R., Langton M. (2016). Yellow mealworm protein for food purposes – Extraction and functional properties. PLoS One, 11: e0147791.]Search in Google Scholar
[Ziegler R. (2003). Biochemie und Stoffwechsel. In: Lehrbuch der Entomologie. 2. Auflage, Spektrum Akademischer Verlag, Dettner K., Peters W. (eds.). München, Germany, pp. 75–89.]Search in Google Scholar