1. bookVolume 19 (2019): Issue 3 (July 2019)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

The Utilization of Full-Fat Insect Meal in Rainbow Trout (Oncorhynchus mykiss) Nutrition: The Effects on Growth Performance, Intestinal Microbiota and Gastrointestinal Tract Histomorphology

Published Online: 30 Jul 2019
Volume & Issue: Volume 19 (2019) - Issue 3 (July 2019)
Page range: 747 - 765
Received: 14 Aug 2018
Accepted: 01 Mar 2019
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

A 71-day-long experiment was conducted to evaluate the inclusion of 20% Hermetia illucens (HI) meal; Tenebrio molitor (TM) meal; Gryllodes sigillatus (GS) meal; and Blatta lateralis (BL) meal in comparison to a control diet without any insect-based materials that used fish meal as the main source of protein. A total of 1950 rainbow trout juveniles (53.39 ± 3.74 g) were used. The formulated diets were isonitrogenous (45%) and isoenergetic (10 MJ kg−1). The inclusion of a full-fat insect meal did not affect the survival rate during the experimental period. The growth performance was significantly improved in the BL and TM treatments, while in the HI treatment was not affected. However, the GS treatment had a negative effect on the growth performance. The villus height decreased in the TM and GS treatment groups and increased in the BL diet group. The total number of bacteria increased in all insect meal diet groups. The results of the experiment show that B. lateralis, T. molitor and H. illucens full-fat meals can be used as a partial fish meal replacement without negative effects on survival or growth performance parameters. Moreover, full-fat insect meals may be considered as a protein source and a functional feed component that may positively affect the histomorphological structure of the fish gastrointestinal tract and stimulate the expansion of beneficial bacterial populations in the gut.

Keywords

Aarnio K., Bonsdorff E., Rosenback N. (1996). Food and feeding habits of juvenile flounder Platichthys flesus (L.), and turbot Scophthalmus maximus L. in the Åland Archipelago, Northern Baltic Sea. J. Sea Res., 36: 311–320.Search in Google Scholar

Andersen N.M., Cheng L. (2004). The marine insect Halobates (Heteroptera: Gerridae): Biology, adaptations, distribution, and phylogeny. Oceangr. Mar. Biol., 42: 119–180.Search in Google Scholar

Association of Official Analytical Chemists (AOAC) (2007). Official Methods of Analysis, 18th edition. AOAC, Arlington, Virginia, USA.Search in Google Scholar

Barroso F.G., de Haro C., Sánchez-Muros M.J., Venegas E., Martínez-Sánchez A., Pérez-Bañón C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422: 193–201.Search in Google Scholar

Belghit I., Liland N.S., Waagbø R., Biancarosa I., Pelusio N., Li Y., Lock E.J. (2018). Potentialofinsect-baseddietsfor Atlanticsalmon (Salmosalar). Aquaculture, 491: 72–81.Search in Google Scholar

Bondari K., Sheppard D.C. (1981). Soldier fly larvae as feed in commercial fish production. Aquaculture, 24: 103–109.Search in Google Scholar

Bruni L., Pastorelli R., Viti C., Gasco L., Parisi G. (2018). Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture, 487: 56–63.Search in Google Scholar

Edgerton M.D. (2009). Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol., 149: 7–13.Search in Google Scholar

Egerton S., Culloty S., Whooley J., Stanton C., Ross R.P. (2018). The gut microbiota of marine fish. Front. Microbiol., 9: 1–17.Search in Google Scholar

Elia A.C., Capucchio M.T., Caladroni B., Magara G., Jozef A., Dőrr M., Biasato E., Righeltti M., Pastorino P., Parearo M., Francesco G., Schiavone A., Gasco L. (2018). Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496: 50–57.Search in Google Scholar

Ferriz R.A., Baigún C.R.M., Dominino J. (2010). Distribution patterns and trophic characteristics of salmonids and native species inhabiting high altitude rivers of Pampa de Achala region, Argentina. Neotrop. Ichthyol., 8: 851–860.Search in Google Scholar

Florczyk K., Mazurkiewicz J., Przybylska K., Ulikowski D., Szczepkowski M., Andrzejewski W., Golski J. (2014). Growth performance, feed intake and morphology of juvenile European catfish, Silurus glanis (L.) fed diets containing different protein and lipid levels. Aquac. Int., 22: 205–214.Search in Google Scholar

Francis G., Makkar H.P., Becker K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199: 197–227.Search in Google Scholar

Frank D.N., Amand A.L.S., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. (2007). Molecular–phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Nat. Acad. Sci., 104: 13780–13785.Search in Google Scholar

Franks A.H., Harmsen H.J., Raangs G.C., Jansen G.J., Schut F., Welling G.W. (1998). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Env. Microbiol., 64: 3336–3345.Search in Google Scholar

Fuller R. (1989). Probiotics in man and animals. J. Appl. Bact., 66: 365–378.Search in Google Scholar

Gasco L., Henry M., Piccolo G., Marono S., Gai F., Renna M., Luissiana C., Antonopoulou, E., Mola P., Chatzifotis S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Tech., 220: 34–45.Search in Google Scholar

Gasco L., Finke M., Huisvan A. (2018). Can diets containing insects promote animal health? J. Ins. Food Feed., 4: 1–4.Search in Google Scholar

Gerland P., Raftery A.E., Ševčíková H., Li N., Gu D., Spoorenberg T., Alkema L., Fosdick B., Chunn J., Laic N., Bay G., Buettner T., Heilig G., Wilmoth J. (2014). World population stabilization unlikely this century. Science, 346: 234–237.Search in Google Scholar

Green J.A., Hardy R.W. (2002). The optimum dietary essential amino acid pattern for rainbow trout (Oncorhynchus mykiss), to maximize nitrogen retention and minimize nitrogen excretion. Fish Physiol. Bioch., 27: 97–108.Search in Google Scholar

Green T.J., Smullen R., Barnes A.C. (2013). Dietary soybean protein concentrate-induced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota. Vet. Microbiol., 166: 286–292.Search in Google Scholar

Halver J.E., Hardy R.W. (2002). (Eds). Fish Nutrition. San Diego, USA, Academic Press, 3rd ed., 824 pp.Search in Google Scholar

Harmsen H.J., Elfferich P., Schut F., Welling G.W. (1999). A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb. Ecol. Health Dis., 11: 3–12.Search in Google Scholar

Heikkinen J., Vielma J., Kemiläinen O., Tiirola M., Eskelinen P., Kiuru T., Navia-Paldanius D., von Wright A. (2006). Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture, 261: 259–268.Search in Google Scholar

Jabir M., Jabir S.A.R., Vikineswary S. (2012 a). Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile. Afr. J. Biotechnol., 11: 6592–6598.10.5897/AJB11.1084Search in Google Scholar

Jabir M., Razak S., Vikineswary S. (2012 b). Chemical composition and nutrient digestibility of super worm meal in red tilapia juvenile. Pak. Vet. J., 32: 489–493.Search in Google Scholar

Józefiak A., Engberg R.M. (2017). Insect proteins as a potential source of antimicrobial peptides in livestock production, J. Anim. Feed Sci., 26: 87–99.Search in Google Scholar

Józefiak A., Kierończyk B., Rawski M., Mazurkiewicz J., Benzertiha A., Gobbi P., Nogales-Mérida S., Świątkiewicz S., Józefiak D. (2018). Full-fat insect meals as feed additive – the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J. Anim. Feed Sci. 27: 131–139.Search in Google Scholar

Józefiak D., Sip A., Rawski M., Rutkowski A., Kaczmarek S., Hojberg O., Jensen B.B., Engberg R.M. (2011). Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens. Br. Poult. Sci., 52: 492–499.Search in Google Scholar

Józefiak D., Józefiak A., Kierończyk B., Rawski M. Świątkiewicz S., Długosz J., Engberg R.M. (2016). Insects – a natural nutrient source for poultry – a review. Ann. Anim. Sci., 16: 297–313.Search in Google Scholar

Kierończyk B., Rawski M., Józefiak A., Mazurkiewicz J., Świątkiewicz S., Siwek M., Bednarczyk M., Szumacher-Strabel M., Cieślak A., Benzertiha A., Józefiak D. (2018 a). Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech., 240: 170–183.10.1016/j.anifeedsci.2018.04.002Search in Google Scholar

Kierończyk B., Rawski M., Pawełczyk P., Różyńska J., Golusik J., Mikołajczak Z., Józefiak D. (2018 b). Do insects smell attractive to dogs? A comparison of dog reactions to insects and commercial feed aromas – a preliminary study. Ann. Anim. Sci., 18: 795–800.10.2478/aoas-2018-0012Search in Google Scholar

Kroeckel S., Harjes A-G., Roth I., Katz H., Wuertz S., Susenbeth A., Schulz C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute – Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364: 345–352.Search in Google Scholar

Kurakawa T., Ogata K., Matsuda K., Tsuji H., Kubota H., Takada T., Kado Y., Asahara T., Takahashi T., Nomoto K. (2015). Diversity of intestinal Clostridium coccoides group in the Japanese population, as demonstrated by reverse transcription-quantitative PCR. PloS One, 10: 1–19.Search in Google Scholar

Lazzarotto V., Corraze G., Leprevost A., Quillet E., Dupont – Nivet M., Médale F. (2015). Three-year breeding cycle of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet, totally free of marine resources: consequences for reproduction, fatty acid composition and progeny survival. PloS One, 10: 1–17.Search in Google Scholar

Leary S., Underwood W., Anthony R., Cartner S., Corey D., Grandin T., Greenacre C., Gwaltney-Brant S., McCrackin M.A., Meyer R., Miller D., Shearer J., Yanong R. (2013). AVMA Guidelines for the euthanasia of animals. Illinois, USA: American Veterinary Medical Association, pp. 67–72.Search in Google Scholar

Liu H., Guo X., Gooneratne R., Lai R., Zeng C., Zhan F., Wang W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep., 6: 1–12.Search in Google Scholar

Lock E., Arsiwalla T., Waagbø R. (2015). Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr., 22: 1202–1213.Search in Google Scholar

Magalhães R., Sánchez-López A., Silva Leal R., Martínez-Llorens S., Oliva-Teles A., Peres H. (2017). Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture, 476: 79–85.Search in Google Scholar

Makkar H.P.S., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Tech., 197: 1–33.Search in Google Scholar

Mancuso T., Baldi L., Gasco L. (2016). An empirical study on consumer acceptance of farmed fish fed on insect meals: the Italian case. Aquacult. Int., 24: 1489–1507.Search in Google Scholar

Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K-H. (1996). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology, 142: 1097–106.Search in Google Scholar

Mazurkiewicz J., Przybył A., Czyżak-Runowska G., Łyczyński A. (2011). Cold-pressed rapeseed cake as a component of the diet of common carp (Cyprinus carpio L.): effects on growth, nutrient utilization, body composition and meat quality. Aquac. Nutr. 17: 387–394.Search in Google Scholar

Merrifield D.L., Harper G.M., Dimitroglou A., Ringø E., Davies S.J. (2010). Possible influence of probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout (Oncorhynchus mykiss) enterocytes. Aquacult. Res., 41: 1268–1272.Search in Google Scholar

Morales-Ramos M.G, Rojas G., Shapiro-Ilan D. (2014). (Eds). Mass production of beneficial organisms. Cambridge, USA, Academic Press – Elservier, 565–582 pp.Search in Google Scholar

Nayak S.K. (2010 a). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol., 29: 2–14.10.1016/j.fsi.2010.02.01720219683Search in Google Scholar

Nayak S.K. (2010 b). Role of gastrointestinal microbiota in fish. Aquacult. Res., 41: 1553–1573.10.1111/j.1365-2109.2010.02546.xSearch in Google Scholar

Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A. (2018). Insect meals in fish nutrition. Rev. Aquacult., 10: 1–24.Search in Google Scholar

Ogino C. (1980). Requirements of carp and rainbow trout for essential amino acids. Bulletin of the Japanese Society for the Science of Fish, 46: 171–174.Search in Google Scholar

Ogunji J.O., Nimptsch J., Wiegand C., Schulz C. (2007). Evaluation of the influence of housefly maggot meal (magmeal) diets on catalase, glutathione S-transferase and glycogen concentration in the liver of Oreochromis niloticus fingerling. Comp. Biochem. A Mol. Integr Physiol., 147: 942–947.Search in Google Scholar

Orlov A.V., Gerasimov Y.V., Lapshin O.M. (2006). The feeding behavior of cultured and wild Atlantic salmon Salmo salar L., in the Louvenga river, Kola peninsula, Russia. ICES J. Mar. Sci., 63: 1297–1303.Search in Google Scholar

Ramos-Elorduy J., González E.A., Hernández A.R., Pino J.M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol., 95: 214–220.Search in Google Scholar

Rawski M., Kierończyk B., Długosz J., Świątkiewicz S., Józefiak D. (2016). Dietary probiotics affect gastrointestinal microbiota, histological structure and shell mineralization in turtles. PLoS One, 11: 1–12.Search in Google Scholar

Rawski M., Kierończyk B., Świątkiewicz S., Józefiak D. (2018). Long-term study on single and multiple species probiotic preparations for Florida softshell turtle (Apalone ferox) nutrition. Anim. Sci. Pap. Rep., 36: 87–98.Search in Google Scholar

Rikardsen A.H., Sandring S. (2006). Diet and size-selective feeding by escaped hatchery rainbow trout Oncorhynchus mykiss (Walbaum). ICES J. Mar. Sci., 63: 460–465.Search in Google Scholar

Roncarati A., Gasco L., Parisi G., Terova G. (2015). Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. J. Ins. Food Feed, 1: 233–240.Search in Google Scholar

Sánchez-Muros M.J., Barroso F.G., Manzano-Agugliaro F. (2014). Insect meal as renewable source of food for animal feeding: a review. J. Clean. Prod., 65: 16–27.Search in Google Scholar

Sánchez-Muros M.J., Haro C., Sanz A., Trenzado C., Villareces S., Barroso F. (2015). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac. Nutr., 22: 943–955.Search in Google Scholar

Sghir A., Gramet G., Suau A., Rochet V., Pochart P., Dore J. (2000). Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Env. Microbiol., 66: 2263–2266.Search in Google Scholar

Subasinghe R., Soto D., Jia J. (2009). Global aquaculture and its role in sustainable development. Rev. Aquacult., 1: 2–9.Search in Google Scholar

Świątkiewicz S., Świątkiewicz M., Arczewska-Włosek A., Józefiak D. (2014). Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition. J. Anim. Physiol. Anim. Nutr., 99: 1–15.Search in Google Scholar

Talwar C., Nagar S., Lal R., Negi R.K. (2018). Fish gut microbiome: current approaches and future perspectives. Indian J. Microbiol., 58: 397–414.Search in Google Scholar

Tang X., Fatufe A.A., Yin Y., Tang Z., Wang S., Liu Z., Li X., Li T. (2012). Dietary supplementation with recombinant lactoferrampin-lactoferricin improves growth performance and affects serum parameters in piglets. J. Anim. Vet. Adv., 11: 2548–2555.Search in Google Scholar

Tang Z., Yin Y., Zhang Y., Huang R., Sun Z., Li T., Chu W., Kong X., Li L., Geng M., Tu Q. (2009). Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Brit. J. Nutr., 101: 998–1005.Search in Google Scholar

Topic Popovic N., Strunjak-Perovic I., Coz-Rakovac R., Barisic J., Jadan M., Persin Berakovic A., Sauerborn Klobucar R. (2012). Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol., 28: 553–564.Search in Google Scholar

Vargas A., Randazzo B., Riolo P., Truzzi C., Gioacchini G., Giorgini E., Loreto N., Ruschioni S., Zarantoniello M., Antonucci M., Polverini S., Cardinaletti G., Sabbatni S., Tulli F., Olivotto I. (2018). Rearing zebrafish on black soldier fly (Hermetia illucens): biometric, histological, spectroscopic, biochemical, and molecular implications. Zebrafish, 15: 404–419.Search in Google Scholar

Vargas-Abundez J.A., Randazzo B., Foddai M., Sanchini L., Truzzi C., Giorgini E., Gasco L., Olivotto I. (2019). Insect meal based diets for clownfish: biometric, histological, spectroscopic, biochemical and molecular implications. Aquaculture, 498: 1–11.Search in Google Scholar

Wang A.R., Ran C., Ringø E., Zhou Z.G. (2018). Progress in fish gastrointestinal microbiota research. Rev. Aquacult., 10: 626–640.Search in Google Scholar

Webster C.D., Lim C. (2002). (Eds). Nutrient requirements and feeding of finfish for aquaculture. Oxon, United Kingdom, CABI Publishing, pp. 184–201.Search in Google Scholar

Wong S., Waldrop T., Summerfelt S., Davidson J., Barrows F., Kenney P.B., Welch T., Weins G.D., Snekvik K., Rawls J.F., Good C. (2013). Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl. Environ. Microbiol., 79: 4974–4984.Search in Google Scholar

Wu S., Zhang F., Huang Z., Liu H., Xie C., Zhang J., Thacker P.A., Qiao S. (2012). Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides, 35: 225–230.Search in Google Scholar

Xiao H., Shao F., Wu M., Ren W., Xiong X., Tan B., Ying Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. J. Anim. Sci. Biot., 6: 1–6.Search in Google Scholar

Ye L., Amberg J., Chapman D., Gaikowski M., Liu W.T. (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. Mult. J. Microbial Ecol. (ISME), 8: 541–551.Search in Google Scholar

Yoon J., Ingale S., Kim J., Kim K., Lee S., Park Y., Lee S.C., Kwon I.K., Chae B.J. (2012). Effects of dietary supplementation of antimicrobial peptide-A3 on growth performance, nutrient digestibility, intestinal and fecal microflora and intestinal morphology in weanling pigs. Anim. Feed Sci. Tech., 177: 98–107.Search in Google Scholar

Yoon J., Ingale S., Kim J., Kim K., Lee S., Park Y., Lee S.C., Kwon I.K., Chae B.J. (2014). Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs. Liv. Sci., 159: 53–60.Search in Google Scholar

Yoon J.H., Ingale S.L., Kim J.S., Kim K.H., Lohakare J., Park Y.C., Kwon I.K., Chae B.J. (2013). Effects of dietary supplementation with antimicrobial peptide-P5 on growth performance, apparent total tract digestibility, faecal and intestinal microflora and intestinal morphology of weanling pigs. J. Sci. Food Agri., 93: 587–592.Search in Google Scholar

Zarantoniello M., Bruni L., Randazzo B., Vargas A., Giocachini G., Truzzi C., Annibaldi A., Riolo P., Parisi G., Cardinaletti G., Trulli F., Olivoto I. (2018). Partial dietary inclusion of Hermetia illucens (black soldier fly) full fat prepupae in zebrafish feed: biometric, histological, biochemical and molecular implications. Zebrafish, 5: 519–532.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo