1. bookVolume 18 (2018): Issue 4 (October 2018)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

White Tea is More Effective in Preservation of Bone Loss in Adult Rats Co-Exposed to Lead and Cadmium Compared to Black, Red or Green Tea

Published Online: 02 Nov 2018
Volume & Issue: Volume 18 (2018) - Issue 4 (October 2018)
Page range: 937 - 953
Received: 26 Jan 2018
Accepted: 17 May 2018
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Lead (Pb) and cadmium (Cd) are toxic metals occurring commonly in the human environment that show mutagenic, genotoxic and carcinogenic effects. Dietary components could prevent heavy metals intoxication by reducing their accumulation in the body. The purpose of the study was to check possible protective effect of regular consumption of white, black, red, or green tea on bone metabolism during long-term exposure to Pb and Cd in adult rats. The 12 week-long exposure to Pb and Cd (50 mg Pb and 7 mg Cd/kg of the diet) in a rat model was studied. Twelve-week-old adult male Wistar rats were randomly divided into a negative control group (Pb and Cd exposure without tea), a control (without Pb and Cd and teas), and groups co-exposed to Pb and Cd and supplemented with green, red, black, or white tea (n=12 each group). The experiment lasted for 12 weeks. The co-exposure to Pb and Cd led to the increase of bone resorption depending on the tea treatment, which was confirmed by the mechanical testing and histomorphometrical examination of cancellous bone. Pb and Cd influenced mechanical strength, reduced the densitometric and geometric parameters and the thickness of growth plate and articular cartilages. Concluding, white tea exerted the best protective effect on bone tissue and hyaline cartilage against heavy metal action.

Keywords

Brzóska M.M. (2012). Low-level chronic exposure to cadmium enhances the risk of long bone fractures: A study on a female rat model of human lifetime exposure. J. Appl. Toxicol., 32: 34–44.Search in Google Scholar

Brzóska M.M., Rogalska J., Galazyn-Sidorczuk M., Jurczuk M., Roszczenko A., Kulikowska-Karpińska E., Moniuszko-Jakoniuk J. (2007). Effect of zinc supplementation on bone metabolism in male rats chronically exposed to cadmium. Toxicology, 237: 89–103.Search in Google Scholar

Chen X., Zhu G., Jin T., Lei L., Liang Y. (2011). Bone mineral density is related with previous renal dysfunction caused by cadmium exposure. Environ. Toxicol. Pharmacol., 32: 46–53.Search in Google Scholar

Cretacci Y., Parsons P.J. (2010). Localized accumulation of lead within and among bones from lead-dosed goats. Environ. Res., 110: 26–32.Search in Google Scholar

Dermience M., Lognay G., Mathieu F., Goyens P. (2015). Effects of thirty elements on bone metabolism. J. Trace. Elem. Med. Biol., 32: 86–106.Search in Google Scholar

Devine A., Hodgson J.M., Dick I.M., Prince R.L. (2007). Tea drinking is associated with benefits on bone density in older women. Am. J. Clin. Nutr., 86: 1243–1247.Search in Google Scholar

Dobrowolski P., Tomaszewska E., Kurlak P., Pierzynowski S.G. (2016). Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats. Exp. Biol. Med., 241: 14–24.Search in Google Scholar

Duranova H., Martiniakova M., Imelka R., Grosskopf B., Bobonova I., Toman R. (2014). Changes in compact bone microstructure of rats subchronically exposed to cadmium. Acta. Vet. Scand., 56: 64.Search in Google Scholar

EFSA (2012 a). Lead dietary exposure in the European population. EFSA J., 10: 2831.10.2903/j.efsa.2012.2831Search in Google Scholar

EFSA (2012 b). Cadmium dietary exposure in the European population. EFSA J., 10: 2551.10.2903/j.efsa.2012.2551Search in Google Scholar

Gaur S., Agnihorti R. (2014). Green tea: a novel functional food for the oral health of older adults. Geriatr. Gerontol. Int., 14: 238–250.Search in Google Scholar

Green C.J., de Dauwe P., Bpyle T., Tabatabaei S.M., Fritschi L., Heyworth S. (2014). Tea, coffee, and milk consumption and colorectal cancer risk. J. Epidemiol., 24: 146–153.Search in Google Scholar

Gülçin I., Huyut Z., Elmastaş M., Aboul-Enein H.Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian J. Chem., 3: 43–53.Search in Google Scholar

Hilal Y., Engelhardt U. (2007). Characterization of white tea – Comparison to green and black tea. J. Verbr. Lebensm., 2: 414–421.Search in Google Scholar

Hogervorst J., Plusquin M., Vangronsveld J., Nawrot T., Cuypers A., Van Hecke E., Roels H.A., Carleer R., Staessen J.A. (2007). House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ. Res., 103: 30–37.Search in Google Scholar

James K.A., Meliker J.R. (2013). Environmental cadmium exposure and osteoporosis: a review. Int. J. Public Health., 58: 737–745.Search in Google Scholar

Khalaf A.A., Moselhy W.A., Abdel-Hamed M.I. (2012). The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicol., 33: 280–289.Search in Google Scholar

Lattouf R., Younes R., Lutomski D., Naaman N., Godeau G., Senni K., Changotade S. (2015). Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J. Histochem. Cytochem., 62: 751–758.Search in Google Scholar

Lim H.S., Lee H.H., Kim T.H., Lee B.R. (2016). Relationship between heavy metal exposure and bone mineral density in Korean adult. J. Bone Metab., 23: 223–231.Search in Google Scholar

Maeda-Yamamoto M. (2013). Human clinical studies of tea polyphenols in allergy or life style-related diseases. Curr. Pharm. Des., 19: 6148–6155.Search in Google Scholar

Muszyński S., Kwiecień M., Tomaszewska E., Świetlicka I., Dobrowolski P., Kasperek K., Jeżewska-Witkowska G. (2017). Effect of caponization on performance and quality characteristics of long bones in Polbar chickens. Poultry Sci., 96: 491–500.Search in Google Scholar

Niedzwiecki A., Roomi M.W., Kalinovsky T., Rath M. (2016). Anticancer efficacy of polyphenols and their combinations. Nutrients, 8: E552.Search in Google Scholar

Pemmer B., Roschger A., Wastl A., Hofstaetter J.G., Wobrauschek P., Simon R., Thaler H.W., Roschger P., Klaushofer K., Streli C. (2013). Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone, 57: 184–193.Search in Google Scholar

Quinn T.M., Morel V. (2007). Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage. Biomech. Model. Mechanobiol., 6: 73–82.Search in Google Scholar

Reeves P.G., Nielsen F.H., Fahey Jr. G.C. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123: 1939–1951.Search in Google Scholar

Shen C.L., Yeh J.K., Cao J.J., Chyu M.C., Wang J.S. (2011). Green tea and bone health: Evidence from laboratory studies. Pharmacol. Res., 64: 155–161.Search in Google Scholar

Shen C.L., Chyu M.C., Wang J.S. (2013). Tea and bone health: steps forward in translational nutrition. Am. J. Clin. Nutr., 98: 1694S–1699S.Search in Google Scholar

Sheng J., Qu X., Zhang X., Zhai Z., Li H., Liu X., Li H., Liu G., Zhu Z., Hao Y., Qin A., Dai K. (2014). Coffee, tea, and the risk of hip fracture: a meta-analysis. Osteoporos. Int., 25: 141–150.Search in Google Scholar

Suvara S.K., Layton C., Bancroft J.D. (2013). Bancroft’s theory and practice of histological techniques. Edinburgh, Churchill Livingstone, 7th ed., pp. 654.Search in Google Scholar

Śliwa E. (2010). 2-Oxoglutaric acid administration diminishes fundectomy-induced osteopenia in pigs. J. Anim. Physiol. Anim. Nutr., 94: e86–e95.Search in Google Scholar

Śliwa E., Kowalik S., Tatara M.R., Krupski W., Majcher P., Łuszczewska-Sierakowska I., Pierzynowski S.G., Studziński T. (2005). Effect of alpha-ketoglutarate (AKG) given to pregnant sows on development of humerus and femur in newborns. Bull. Vet. Instit. Pulawy., 49: 117–120.Search in Google Scholar

Śliwa E., Tatara M.R., Nowakowski H., Pierzynowski S.G., Studziński T. (2006). Effect of maternal dexamethasone and alpha-ketoglutarate administration on skeletal development during the last three weeks of prenatal life in pigs. J. Matern. Fetal Neonatal Med., 19: 489–493.Search in Google Scholar

Tomaszewska E., Dobrowolski P., Siwicki A. (2012 a). Maternal treatment with dexa-methasone at minimal therapeutic doses inhibits neonatal bone development in a gender-dependent manner. Livest. Sci., 146: 175–182.10.1016/j.livsci.2012.03.008Search in Google Scholar

Tomaszewska E., Dobrowolski P., Wydrych J. (2012 b). Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone. J. Physiol. Pharmacol., 63: 547–554.Search in Google Scholar

Tomaszewska E., Dobrowolski P., Puzio I. (2013). Morphological changes of the cartilage and bone in newborn piglets evoked by experimentally induced glucocorticoid excess during pregnancy. J. Anim. Physiol. Anim. Nutr., 97: 785–796.Search in Google Scholar

Tomaszewska E., Winiarska-Mieczan A., Dobrowolski P. (2015 a). The lack of protective effects of tea supplementation on liver and jejunal epithelium in adult rats exposed to cadmium and lead. Environ. Toxicol. Pharmacol., 40: 708–714.10.1016/j.etap.2015.09.00226410089Search in Google Scholar

Tomaszewska E., Winiarska-Mieczan A., Dobrowolski P. (2015 b). Hematological and serum biochemical parameters of blood in adolescent rats and histomorphological changes in the jejunal epithelium and liver after chronic exposure to cadmium and lead in the case of supplementation with green tea vs black, red or white tea. Exp. Toxicol. Pathol., 67: 331–339.10.1016/j.etp.2015.02.00525837382Search in Google Scholar

Tomaszewska E., Dobrowolski P., Winiarska-Mieczan A., Kwiecień M., Tomczyk A., Muszyński S., Radzki R. (2016). Alteration in bone geometric and mechanical properties, histomorphometrical parameters of trabecular bone, articular cartilage and growth plate in adolescent rats after chronic co-exposure to cadmium and lead in the case of supplementation with green, black, red and white tea. Environ. Toxicol. Pharmacol., 46: 36–44.Search in Google Scholar

Tomaszewska E., Dobrowolski P., Winiarska-Mieczan A., Kwiecień M., Tomczyk A., Muszyński S. (2017 a). The effect of tannic acid on the bone tissue of adult male Wistar rats exposed to cadmium and lead. Exp. Toxicol. Pathol., 69: 131–141.10.1016/j.etp.2016.12.00327989570Search in Google Scholar

Tomaszewska E., Kwiecień M., Muszyński S., Dobrowolski P., Kasperek K., Blicharski T., Jeżewska-Witkowska G., Grela E. R. (2017 b). Long-bone properties and development are affected by caponisation and breed in Polish fowls. Brit. Poultry Sci., 58: 312–318.10.1080/00071668.2017.128077028102084Search in Google Scholar

WHO (1992). Environmental health criteria 134: Cadmium. Geneva, World Health Organization, pp. 280.Search in Google Scholar

Zhang Z.F., Yang J.L., Jiang H.C., Lai Z., Wu Z., Liu Z.X. (2017). Updated association of tea consumption and bone mineral density: A meta-analysis. Medicine, 96: e6437.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo