Open Access

Study of the anxiolytic effect of propranolol and dextromethorphan in mice using a model of psychogenic stress


Cite

Blanchard RJ, Blanchard DC, Rodgers J et al. The characterization and modelling of antipredator defensive behavior. Neurosci Biobehav Rev. 1990;14:463-472.10.1016/S0149-7634(05)80069-7Search in Google Scholar

Blanchard RJ, Blanchard DC, Weiss SM et al. The effects of ethanol and diazepam on reactions to predatory odors. Pharmacology Biochemistry and Behavior. 1990;35:775-780.10.1016/0091-3057(90)90357-NSearch in Google Scholar

Ronzoni G, Arco A, Mora F et al. Enhanced noradrenergic activity in the amygdala contributes to hyperarousal in an animal model of PTSD. Psychoneuroendocrinology. 2016;70:1-9.10.1016/j.psyneuen.2016.04.018Search in Google Scholar

Blanchard RJ, Yudko EB, Rodgers RJ et al. Defense system psychopharmacology: an ethological approach to the pharmacology of fear and anxiety. Behav Brain Res. 1993;58:155-165.10.1016/0166-4328(93)90100-5Search in Google Scholar

Canteras NS. The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacol Biochem Behav. 2002;71:481-491.10.1016/S0091-3057(01)00685-2Search in Google Scholar

Dielenberg RA, Hunt GE, McGregor IS. “When a rat smells a cat”: the distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience. 2001;104:1085-1097.10.1016/S0306-4522(01)00150-6Search in Google Scholar

Ruther J, Meiners T, Steidle JLM. Rich in phenomena-lacking in terms. A classification of kairomones. Chemoecology. 2002;12:161-167.10.1007/PL00012664Search in Google Scholar

Rico JL, Bonuti R, Morato S. The elevated gradient of aversion: a new apparatus to study the rat behavior dimensions of anxiety, fear, and impulsivity. Braz J Med Biol Res. 2019;52:e8899.10.1590/1414-431x20198899682688531664307Search in Google Scholar

Adamec R, Muir C, Grimes M et al. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav Brain Res. 2007;179:192-207.10.1016/j.bbr.2007.02.00117335916Search in Google Scholar

Strawn JR, Geracioti TD Jr. Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder. Depress Anxiety. 2008;25:260-271.10.1002/da.2029217354267Search in Google Scholar

Boehnlein JK, Kinzie JD. Pharmacologic reduction of CNS noradrenergic activity in PTSD: the case for clonidine and prazosin. J Psychiatr Pract. 2007;13:72-78.10.1097/01.pra.0000265763.79753.c1Search in Google Scholar

Brunet A, Orr SP, Tremblay J et al. Effect of post-retrieval propranolol on psychophysiologic responding during subsequent script-driven traumatic imagery in post-traumatic stress disorder. J Psychiatr Res. 2008;42:503-506.10.1016/j.jpsychires.2007.05.006Search in Google Scholar

Debiec J, Ledoux JE. Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience. 2004;129:267-272.10.1016/j.neuroscience.2004.08.018Search in Google Scholar

Adamec RE, Burton P, Shallow T et al. NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure--implications for anxiety associated with posttraumatic stress disorder. Physiol Behav. 1999;65:723-737.10.1016/S0031-9384(98)00226-1Search in Google Scholar

Zhang LM, Zhou WW, Ji YJ et al. Anxiolytic effects of ketamine in animal models of posttraumatic stress disorder. Psychopharmacology (Berl). 2015;232:663-672.10.1007/s00213-014-3697-9Search in Google Scholar

Siu A, Drachtman R. Dextromethorphan: a review of N-methyl-d-aspartate receptor antagonist in the management of pain. CNS Drug Rev. 2007;13:96-106.10.1111/j.1527-3458.2007.00006.xSearch in Google Scholar

Werling LL, Lauterbach EC, Calef U. Dextromethorphan as a potential neuroprotective agent with unique mechanisms of action. Neurologist. 2007;13:272-293.10.1097/NRL.0b013e3180f60bd8Search in Google Scholar

Lapin IP. Only controls: effect of handling, sham injection, and intraperitoneal injection of saline on behavior of mice in an elevated plus-maze. J Pharmacol Toxicol Methods. 1995; 34:73-7.10.1016/1056-8719(95)00025-DSearch in Google Scholar

Vogel HG (Ed). Drug Discovery and Evaluation: Pharmacological Assays. Springer-Verlag Berlin Heidelberg, New York, 2008, 629.10.1007/978-3-540-70995-4Search in Google Scholar

Muñoz-Abellán C, Armario A, Nadal R. Do odors from different cats induce equivalent unconditioned and conditioned responses in rats? Physiol Behav. 2010;99:388-394.10.1016/j.physbeh.2009.12.00820006964Search in Google Scholar

Feyissa DD, Aher YD, Engidawork E et al. Individual Differences in Male Rats in a Behavioral Test Battery: A Multivariate Statistical Approach. Front Behav Neurosci. 2017;11:26.10.3389/fnbeh.2017.00026Search in Google Scholar

Carola V, D’Olimpio F, Brunamonti E et al. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res. 2002;134:49–57.10.1016/S0166-4328(01)00452-1Search in Google Scholar

Wu YP, Gao HY, Ouyang SH et al. Predator stress-induced depression is associated with inhibition of hippocampal neurogenesis in adult male mice. Neural Regen Res. 2019;14:298-305.10.4103/1673-5374.244792630117030531013Search in Google Scholar

Sütt S, Raud S, Areda T et al. Cat odour-induced anxiety--a study of the involvement of the endocannabinoid system. Psychopharmacology (Berl). 2008;198:509-520.10.1007/s00213-007-0927-417882402Search in Google Scholar

Whitaker AM, Gilpin NW, Edwards S. Animal Models of Post-Traumatic Stress Disorder and Recent Neurobiological Insights. Behav Pharmacol. 2014;25:398–409.10.1097/FBP.0000000000000069416392725083568Search in Google Scholar

Valizadegan F, Oryan S, Nasehi M et al. Interaction between morphine and noradrenergic system of basolateral amygdala on anxiety and memory in the elevated plus-maze test based on a test-retest paradigm. Arch Iran Med. 2013;16:281-287.Search in Google Scholar

Argolo FC, Cavalcanti-Ribeiro P, Netto LR et al. Prevention of posttraumatic stress disorder with propranolol: A meta-analytic review. J Psychosom Res. 2015;79:89-93.10.1016/j.jpsychores.2015.04.00625972056Search in Google Scholar

Nielson KA, Czech DA, Laubmeier KK. Chronic administration of propranolol impairs inhibitory avoidance retention in mice. Neurobiol Learn Mem. 1999;71:248-257.10.1006/nlme.1998.387310082644Search in Google Scholar

Dere E, Topic B, De Souza Silva MA et al. NMDA-receptor antagonism via dextromethorphan and ifenprodil modulates graded anxiety test performance of C57BL/6 mice. Behav Pharmacol. 2003;14:245-9.10.1097/00008877-200305000-0000912799527Search in Google Scholar

Po KT, Siu AM, Lau BW et al. Repeated, high-dose dextromethorphan treatment decreases neurogenesis and results in depression-like behavior in rats. Exp Brain Res. 2015; 233:2205-2214.10.1007/s00221-015-4290-025939533Search in Google Scholar

Salunke BP, Umathe SN, Chavan JG. Involvement of NMDA receptor in low-frequency magnetic field-induced anxiety in mice. Electromagn Biol Med. 2014;33:312-326.10.3109/15368378.2013.83945324131395Search in Google Scholar

Engin E, Treit D, Dickson CT. Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience. 2009;161:359-369.10.1016/j.neuroscience.2009.03.03819321151Search in Google Scholar

Silote GP, de Oliveira SFS, Ribeiro DE et al. Ketamine effects on anxiety and fear-related behaviors: Current literature evidence and new findings. Prog Neuropsychopharmacol Biol Psychiatry. 2020;100:109878.10.1016/j.pnpbp.2020.10987831982463Search in Google Scholar

Adamec R, Muir C, Grimes M, et al. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav Brain Res. 2007;179:192-207.10.1016/j.bbr.2007.02.00117335916Search in Google Scholar

eISSN:
2668-7763
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other