1. Chabner BA, Roberts TG Jr. Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer 2005;5:65–72. doi: 10.1038/nrc152910.1038/nrc152915630416Open DOISearch in Google Scholar

2. World Health Organization (WHO). Cancer, Fact sheet February 2017 [displayed 9 September 2019]. Available at in Google Scholar

3. Kumar S, Ahmad MK, Waseem M, Pandey AK. Drug targets for cancer treatment: an overview. Med Chem 2015;5:115–23. doi: 10.4172/2161-0444.100025210.4172/2161-0444.1000252Open DOISearch in Google Scholar

4. Poruchynsky MS, Komlodi-Pasztor E, Trostel S, Wilkerson J, Regairaz M, Pommier Y, Zhang X, Kumar Maity T, Robey R, Burotto M, Sackett D, Guha U, Fojo AT. Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc Natl AcadSci U S A 2015;112:1571–6. doi: 10.1073/pnas.141641811210.1073/pnas.1416418112432124525605897Open DOISearch in Google Scholar

5. Giavazzi R, Bonezzi K, Taraboletti G. Microtubule targeting agents and the tumor vasculature. In: Fojo AT, editor. The role of microtubules in cell biology, neurobiology, and oncology. Totowa (NJ). Humana Press; 2008. p. 519–30.10.1007/978-1-59745-336-3_19Search in Google Scholar

6. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004;4:253–65. doi: 10.1038/nrc13171505728510.1038/nrc131715057285Search in Google Scholar

7. Dong M, Liu F, Zhou H, Zhai S, Yan B. Novel natural product and privileged scaffold-based tubulin inhibitors targeting the colchicine binding site. Molecules 2016;21:1375. doi: 10.3390/molecules2110137510.3390/2110137527754459Open DOISearch in Google Scholar

8. Kavallaris M, Kuo DY, Burkhart CA, Regl DL, Norris MD, Haber M, Horwitz SB. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 1997;100:1282–93. doi: 10.1172/JCI1196429276747Search in Google Scholar

9. Forli S. Epothilones: from discovery to clinical trials. Curr Top Med Chem 2014;14:2312–21. doi: 10.2174/156802661466614113009585510.2174/1568026614666141130095855462978825434353Open DOISearch in Google Scholar

10. Crimmins MT. Synthetic approaches to the microtubule stabilizing agent (-)-laulimalide. Curr Opin Drug Discov Devel 2002;5:944–59. PMID: 12478725Search in Google Scholar

11. Steinmetz MO, Prota AE. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 2018;28:776–92. doi: 10.1016/j.tcb.2018.05.00110.1016/j.tcb.2018.05.00129871823Open DOISearch in Google Scholar

12. Sapra S, Bhalla Y, Sharma S, Singh G, Nepali K, Budhiraja A, Dhar KL. Colchicine and its various physicochemical and biological aspects. Med Chem Res 2013;22:531–47. doi: 10.1007/s00044-012-0077-z10.1007/s00044-012-0077-zOpen DOISearch in Google Scholar

13. Jain S, Vahdat LT. Eribulinmesylate. Clin Cancer Res 2011;17:6615–22. doi: 10.1158/1078-0432.CCR-11-180710.1158/1078-0432.CCR-11-180721859830Open DOISearch in Google Scholar

14. Modrianský M, Dvorák Z. Microtubule disruptors and their interaction with biotransformation enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005;149:213–5. doi: 10.5507/bp.2005.02810.5507/bp.2005.028Open DOISearch in Google Scholar

15. Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010;9:790–803. doi: 10.1038/nrd325310.1038/nrd3253Open DOISearch in Google Scholar

16. Prota AE, Bargsten K, Zurwerra D, Field JJ, Díaz JF, Altmann KH, Steinmetz MO. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 2013;339:587–90. doi: 10.1126/science.123058210.1126/.1230582Open DOISearch in Google Scholar

17. Pryor DE, O’Brate A, Bilcer G, Díaz JF, Wang Y, Wang Y, Kabaki M, Jung MK, Andreu JM, Ghosh AK, Giannakakou P, Hamel E. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 2002;41:9109–15. doi: 10.1021/bi020211b10.1021/bi020211bOpen DOISearch in Google Scholar

18. Prota AE, Bargsten K, Northcote PT, Marsh M, Altmann KH, Miller JH, Díaz JF, Steinmetz MO. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 2014;53:1621–5. doi: 10.1002/anie.20130774910.1002/anie.201307749Open DOISearch in Google Scholar

19. Pellegrini F. Review: Tubulin function, action of antitubulin drugs and new drug development. Cancer Invest 2005;23:264–73. doi: 10.1081/CNV-20005597010.1081/CNV-200055970Open DOISearch in Google Scholar

20. Ley CD, Horsman MR, Kristjansen PE. Early effects of combretastatin-A4 disodium phosphate on tumor perfusion and interstitial fluid pressure. Neoplasia 2007;9:108–12. doi: 10.1593/neo.0673310.1593/neo.06733Open DOISearch in Google Scholar

21. Gutiérrez ST, Díaz-Oltra S, Falomir E, Murga J, Cardaa M, Marco JA. Synthesis of combretastatin A-4 O-alkyl derivatives and evaluation of their cytotoxic, antiangiogenic and antitelomerase activity. Bioorg Med Chem 2013;21:7267–74. doi: 10.1016/j.bmc.2013.09.06410.1016/j.bmc.2013.09.064Open DOISearch in Google Scholar

22. Ohsumi K, Hatanaka T, Fujita K, Nakagawa R, Fukuda Y, Nihei Y, Suga Y, Morinaga Y, Akiyama Y, Tsuji T. Syntheses and antitumor activity of cis-restricted combretastatins, 5-membered heterocyclic analogues. Bioorg Med Chem Lett 1998;8:3153–8. doi: 10.1016/s0960-894x(98)00579-410.1016/S0960-894X(98)00579-4Search in Google Scholar

23. Yang T, Wang Y, Li Z, Dai W, Yin J, Liang L, Ying X, Zhou S, Wang J, Zhang X, Zhang Q. Targeted delivery of a combination therapy consisting of combretastatin A4 and low-dose doxorubicin against tumorneovasculature. Nanomedicine 2012;8:81–92. doi: 10.1016/j.nano.2011.05.00310.1016/j.nano.2011.05.00321664295Search in Google Scholar

24. Gao M, Zhang D, Jin Q, Jiang C, Wang C, Li J, Peng F, Huang D, Zhang J, Song S. Combretastatin-A4 phosphate improves the distribution and antitumor efficacy of albumin-bound paclitaxel in W256 breast carcinoma model. Oncotarget 2016;7:58133–41. doi: 10.18632/oncotarget.1124910.18632/oncotarget.11249529541827531898Search in Google Scholar

25. Abma E, Daminet S, Smets P, Ni Y, de Rooster H. Combretastatin A4-phosphate and its potential in veterinary oncology, a review. Vet Comp Oncol 2017;15:184–93. doi: 10.1111/vco.1215010.1111/vco.1215025988493Open DOISearch in Google Scholar

26. Marzo-Mas A, Barbier P, Breuzard G, Allegro D, Falomir E, Murga J, Carda M, Peyrot V, Marco JA. Interactions of long-chain homologues of colchicine with tubulin. Eur J Med Chem 2017;126:526–35. doi: 10.1016/j.ejmech.2016.11.04910.1016/j.ejmech.2016.11.04927915168Open DOISearch in Google Scholar

27. Ahmed RI, Osman EE, Awadallah FM, El-Moghazy SM. Design, synthesis and molecular docking of novel diarylcyclohexenone and diarylindazole derivatives as tubulin polymerization inhibitors. J Enzyme Inhib Med Chem 2017;32:176–88. doi: 10.1080/14756366.2016.124453210.1080/14756366.2016.1244532600992527771966Open DOISearch in Google Scholar

28. De Martino G, La Regina G, Coluccia A, Edler MC, Barbera MC, Brancale A, Wilcox E, Hamel E, Artico M, Silvestri R. Arylthioindoles, potent inhibitors of tubulin polymerization. J Med Chem 2004;47:6120–3. doi: 10.1021/jm049360d10.1021/jm049360d15566282Open DOISearch in Google Scholar

29. Tantak MP, Wang J, Singh RP, Kumar A, Shah K, Kumar D. 2-(3’-Indolyl)-N-arylthiazole-4-carboxamides: Synthesis and evaluation of antibacterial and anticancer activities. Bioorg Med Chem Lett 2015;25:4225–31. doi: 10.1016/j.bmcl.2015.07.10510.1016/j.bmcl.2015.07.105456747626298501Open DOISearch in Google Scholar

30. Kamath PR, Sunil D, Ajees AA, Pai KS, Das S. Some new indole-coumarin hybrids; Synthesis, anticancer and Bcl-2 docking studies. Bioorg Chem 2015;63:101–9. doi: 10.1016/j.bioorg.2015.10.00110.1016/j.bioorg.2015.10.00126469742Open DOISearch in Google Scholar

31. Das Mukherjee D, Kumar NM, Tantak MP, Das A, Ganguli A, Datta S, Kumar D, Chakrabarti G. Development of novel bis(indolyl)-hydrazide-hydrazone derivatives as potent microtubule-targeting cytotoxic agents against A549 lung cancer cells. Biochemistry 2016;55:3020–35. doi: 10.1021/acs.biochem.5b0112710.1021/acs.biochem.5b0112727110637Open DOISearch in Google Scholar

32. Liu Y-M, Chen H-L, Lee H-Y, Liou J-P. Tubulin inhibitors: a patent review. Expert OpinTher Pat 2014;24:69–88. doi: 10.1517/13543776.2014.85924710.1517/13543776.2014.85924724313741Open DOISearch in Google Scholar

33. Ramya PVS, Guntuku L, Angapelly S, Digwal CS, Lakshmi UJ, Sigalapalli DK, Babu BN, Naidu VGM, Kamal A. Synthesis and biological evaluation of curcumin inspired indole analogues as tubulin polymerization inhibitors. Eur J Med Chem 2017;127:100–14. doi: 10.1016/j.ejmech.2016.12.04310.1016/j.ejmech.2016.12.04328038323Open DOISearch in Google Scholar

34. Zhang YL, Qin YJ, Tang DJ, Yang MR, Li BY, Wang YT, Cai HY, Wang BZ, Zhu HL. Synthesis and biological evaluation of 1-methyl-1H-indole-pyrazoline hybrids as potential tubulin polymerization inhibitors. Chem Med Chem 2016;11:1446–58. doi: 10.1002/cmdc.20160013710.1002/cmdc.20160013727159418Open DOISearch in Google Scholar

35. Wang YT, Cai XC, Shi TQ, Zhang YL, Wang ZC, Liu CH, Zhu HL. Synthesis, molecular docking and biological evaluation of 1-phenylsulphonyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as novel potential tubulin assembling inhibitors. Chem Biol Drug Des 2017;90:112–8. doi: 10.1111/cbdd.1293210.1111/cbdd.1293228032450Search in Google Scholar

36. Guggilapu SD, Lalita G, Reddy TS, Prajapti SK, Nagarsenkar A, Ramu S, Brahma UR, Lakshmi UJ, Vegi GMN, Bhargava SK, Babu BN. Synthesis of C5-tethered indolyl-3-glyoxylamide derivatives as tubulin polymerization inhibitors. Eur J Med Chem 2017;28:1–12. doi: 10.1016/j.ejmech.2017.01.02610.1016/j.ejmech.2017.01.02628131777Open DOISearch in Google Scholar

37. Chennamaneni S, Gan C, Lama R, Zhong B, Su B. Indomethacin derivatives as tubulin stabilizers to inhibit cancer cell proliferation. Bioorg Med Chem 2016;24:277–85. doi: 10.1016/j.bmc.2015.12.01610.1016/j.bmc.2015.12.01626712098Open DOISearch in Google Scholar

38. Baytas SN, Inceler N, Yilmaz A, Olgac A, Menevse S, Banoglu E, Hamel E, Bortolozzi R, Viola G. Synthesis, biological evaluation and molecular docking studies of trans-indole-3-acrylamide derivatives, a new class of tubulin polymerization inhibitors. Bioorg Med Chem 2014;22:3096–104. doi: 10.1016/j.bmc.2014.04.02710.1016/j.bmc.2014.04.027409168024816066Open DOISearch in Google Scholar

39. Ghinet A, Moise IM, Rigo B, Homerin G, Farce A, Dubois J, Bîcu E. Studies on phenothiazines, new microtubule-interacting compounds with phenothiazine A-ring as potent antineoplastic agents. Bioorg Med Chem 2016;24:2307–17. doi: 10.1016/j.bmc.2016.04.00110.1016/j.bmc.2016.04.00127073050Open DOISearch in Google Scholar

40. Ali I, Lone MN, Al-Othman ZA, Al-Warthan A, Sanagi MM. Heterocyclic scaffolds: centrality in anticancer drug development. Curr Drug Targets 2015;16:711–34. doi: 10.2174/138945011666615030911592210.2174/138945011666615030911592225751009Open DOISearch in Google Scholar

41. Singh S, Ahmad A, Raghuvanshi DS, Hasanain M, Agarwal K, Dubey V, Fatima K, Alam S, Sarkar J, Luqman S, Khan F, Tandon S, Gupta A. Synthesis of 3,5-dihydroxy-7,8-dimethoxy-2-(4-methoxyphenyl)benzopyran-4-one derivatives as anticancer agents. Bioorg Med Chem Lett 2016;26:5322–7. doi: 10.1016/j.bmcl.2016.09.03610.1016/j.bmcl.2016.09.03627671497Open DOISearch in Google Scholar

42. Andújar I, Ríos JL, Giner RM, Recio MC. Pharmacological properties of shikonin - a review of literature since 2002. Planta Med 2013;79:1685–97. doi: 10.1055/s-0033-135093410.1055/s-0033-135093424155261Open DOISearch in Google Scholar

43. Andújar I, Ríos JL, Giner RM, Recio MC. Shikonin promotes intestinal wound healing in vitro via induction of TGF-β release in IEC-18 cells. Eur J Pharm Sci 2013;49:637–41. doi: 10.1016/j.ejps.2013.05.01810.1016/j.ejps.2013.05.01823727294Open DOISearch in Google Scholar

44. Huang CS, Lin AH, Yang TC, Liu KL, Chen HW, Lii CK. Shikonin inhibits oxidized LDL-induced monocyte adhesion by suppressing NFκB activation via up-regulation of PI3K/Akt/Nrf2-dependent antioxidation in EA.hy926 endothelial cells. Biochem Pharmacol 2015;93:352–61. doi: 10.1016/j.bcp.2014.12.00510.1016/j.bcp.2014.12.00525541286Open DOISearch in Google Scholar

45. Skrzypczak A, Przystupa N, Zgadzaj A, Parzonko A, Sykłowska-Baranek K, Paradowska K, Nałęcz-Jawecki G. Antigenotoxic, anti-photogenotoxic and antioxidant activities of natural naphthoquinone shikonin and acetylshikonin and Arnebiaeuchroma callus extracts evaluated by the umu-test and EPR method. Toxicol In Vitro 2015;30:364–72. doi: 10.1016/j.tiv.2015.09.02910.1016/j.tiv.2015.09.02926434532Open DOISearch in Google Scholar

46. Liang D, Sun Y, Shen Y, Li F, Song X, Zhou E, Zhao F, Liu Z, Fu Y, Guo M, Zhang N, Yang Z, Cao Y. Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factor-kappa B signaling pathway. IntImmunopharmacol 2013;16:475–80. doi: 10.1016/j.intimp.201310.1016/j.intimp.2013Open DOISearch in Google Scholar

47. Liu J, Wang P, Xue YX, Li Z, Qu CB, Liu YH. Enhanced antitumor effect of shikonin by inhibiting Endoplasmic Reticulum Stress via JNK/c-Jun pathway in human glioblastoma stem cells. Biochem Biophys Res Commun 2015;466:103–10. doi: 10.1016/j.bbrc.2015.08.11510.1016/j.bbrc.2015.08.11526321663Search in Google Scholar

48. Qiu HY, Wang F, Wang X, Sun WX, Qi JL, Pang YJ, Yang RW, Lu GH, Wang XM, Yang YH. Design, synthesis, and biological evaluation of chalcone-containing shikonin derivatives as inhibitors of tubulin polymerization. Chem Med Chem 2017;12:399–406. doi: 10.1002/cmdc.20170000110.1002/cmdc.20170000128211616Open DOISearch in Google Scholar

49. Kamal A, Srikanth YV, Naseer Ahmed Khan M, Ashraf M, Kashi Reddy M, Sultana F, Kaur T, Chashoo G, Suri N, Sehar I, Wani ZA, Saxena A, Sharma PR, Bhushan S, Mondhe DM, Saxena AK. 2-Anilinonicotinyl linked 2-aminobenzothiazoles and [1,2,4]triazolo[1,5-b] [1,2,4]benzothiadiazine conjugates as potential mitochondrial apoptotic inducers. Bioorg Med Chem 2011;19:7136–50. doi: 10.1016/j.bmc.2011.09.06010.1016/j.bmc.2011.09.06022047801Open DOISearch in Google Scholar

50. Kamal A, Hussaini SM, Nayak VL, Malik MS, Sucharitha ML, Shaik TB, Ashraf M, Bagul C. Synthesis of 2-anilinopyridine dimers as microtubule targeting and apoptosis inducing agents. Bioorg Med Chem 2014;22:6755–67. doi: 10.1016/j.bmc.2014.11.00110.1016/j.bmc.2014.11.00125468039Open DOISearch in Google Scholar

51. Kamal A, Khan MN, Srinivasa Reddy K, Rohini K. Synthesis of a new class of 2-anilino substituted nicotinylarylsulfonylhydrazides as potential anticancer and antibacterial agents. Bioorg Med Chem 2007;15:1004–13. doi: 10.1016/j.bmc.2006.10.02710.1016/j.bmc.2006.10.02717097292Open DOISearch in Google Scholar

52. Dorléans A, Gigant B, Ravelli RB, Mailliet P, Mikol V, Knossow M. Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. Proc Natl Acad Sci USA 2009;106:13775–9. doi: 10.1073/pnas.090422310610.1073/pnas.0904223106272897019666559Open DOISearch in Google Scholar

53. Elmeligie S, Khalil NA, Ahmed EM, Emam SH. New 3-substituted-2-(4-hydroxyanilino) pyridine derivatives, synthesis, antitumor activity and tubulin polymerization inhibition. Arch Pharm (Weinheim) 2017;350(2):e1600256. doi: 10.1002/ardp.20160025610.1002/ardp.20160025628150327Search in Google Scholar

54. Liu YN, Wang JJ, Ji YT, Zhao GD, Tang LQ, Zhang CM, Guo XL, Liu ZP. Design, synthesis and biological evaluation of 1 methyl-1,4-dihydroindeno[1,2-c]pyrazole analogues as potential anticancer agents targeting tubulin colchicine binding site. J Med Chem 2016;59:5341–55. doi: 10.1021/acs.jmedchem.6b0007110.1021/acs.jmedchem.6b0007127172319Open DOISearch in Google Scholar

55. Ali I, Haque A, Saleem K, Hsieh MF. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: synthesis, pharmacological and simulation studies. Bioorg Med Chem 2013;21:3808–20. doi: 10.1016/j.bmc.2013.04.01810.1016/j.bmc.2013.04.01823643901Open DOISearch in Google Scholar

56. Saleem K1, Wani WA, Haque A, Lone MN, Hsieh MF, Jairajpuri MA, Ali I. Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand. Future Med Chem 2013;5:135–46. doi: 10.4155/fmc.12.20110.4155/fmc.12.20123360139Open DOISearch in Google Scholar

57. Magalhaes LG, Marques FB, da Fonseca MB, Rogério KR, Graebin CS, Andricopulo AD. Discovery of a series of acridinones as mechanism-based tubulin assembly inhibitors with anticancer activity. Plos One 2016;11(8):e0160842. doi: 10.1371/journal.pone.016084210.1371/journal.pone.0160842498002827508497Search in Google Scholar

58. Devambatla RK, Namjoshi OA, Choudhary S, Hamel E, Shaffer CV, Rohena CC, Mooberry SL, Gangjee A. Design, synthesis, and preclinical evaluation of 4 substituted-5-methyl-furo[2,3-d]pyrimidines as microtubule targeting agents that are effective against multidrug resistant cancer cells. J Med Chem 2016;59:5752–65. doi: 10.1021/acs.jmedchem.6b0023710.1021/acs.jmedchem.6b00237559010127213719Open DOISearch in Google Scholar

59. Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 2003;8:413–50. doi: 10.1023/A:102551310633010.1023/A:1025513106330Search in Google Scholar

60. Zhou J, Giannakakou P. Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents 2005;5:65–71. doi: 10.2174/156801105335256910.2174/156801105335256915720262Open DOISearch in Google Scholar

61. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature 1979;277:665–7. doi: 10.1016/j.ab.2006.10.01410.1016/j.ab.2006.10.014186841017097592Open DOISearch in Google Scholar

62. Buey RM, Barasoain I, Jackson E, Meyer A, Giannakakou P, Paterson I, Mooberry S, Andreu JM, Díaz JF. Microtubule interactions with chemically diverse stabilizing agents, thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem Biol 2005;12:1269–79. doi: 10.1016/j.chembiol.2005.09.0101635684410.1016/j.chembiol.2005.09.01016356844Search in Google Scholar

63. Kingston DGI, Jagtap PG, Yuan H, Samala L. The chemistry of taxol and related taxoids. In: Herz W, Falk H, Kirby GW, editors. Progress in the chemistry of organic natural products. Vol. 84. Wien: Springer; 2002. p. 53–225.10.1007/978-3-7091-6160-9_212132389Search in Google Scholar

64. Wang Y, Wang J, Wang H, Ye W. Novel taxane derivatives from Taxus wallichiana with high anticancer potency on tumor cells. Chem Biol Drug Des 2016;88:556–61. doi: 10.1111/cbdd.1278210.1111/cbdd.127822715381327153813Open DOISearch in Google Scholar

65. Barbier P, Tsvetkov PO, Breuzard G, Devred F. Deciphering the molecular mechanisms of anti-tubulin plant derived drugs. Phytochem Rev 2014;13:157–69. doi: 10.1007/s11101-013-9302-810.1007/s11101-013-9302-8Open DOISearch in Google Scholar

66. Verma K, Kannan K, Shanthi V, Sethumadhavan R, Karthick V, Ramanathan K. Exploring β-tubulin inhibitors from plant origin using computational approach. Phytochem Anal 2017;28:230–41. doi: 10.1002/pca.266510.1002/pca.266528008675Open DOISearch in Google Scholar

67. Busch T, Kirschning A. Recent advances in the total synthesis of pharmaceutically relevant diterpenes. Nat Prod Rep 2008;25:318–41. doi: 10.1039/b705652b10.1039/b705652b18389140Open DOISearch in Google Scholar

68. Pfeffer TJ, Sasse F, Schmidt CF, Lakämper S, Kirschning A, Scholz T. The natural diterpenetonantzitlolone A its synthetic enantiomer inhibits cell proliferation and kinesin-5 function. Eur J Med Chem 2016;112:164–70. doi: 10.1016/j.ejmech.2016.02.02210.1016/j.ejmech.2016.02.02226896705Open DOISearch in Google Scholar

69. Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT. Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther 2011;130:157–76. doi: 10.1016/j.pharmthera.2011.01.01010.1016/j.pharmthera.2011.01.01021277893Open DOISearch in Google Scholar

70. Hwang ES, Park KK. Magnolol suppresses metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in PC-3 human prostate carcinoma cells. Biosci Biotechnol Biochem 2010;74:961–7. doi: 10.1271/bbb.9078510.1271/bbb.9078520460721Open DOISearch in Google Scholar

71. Kang YJ, Park HJ, Chung HJ, Min HY, Park EJ, Lee MA, Shin Y, Lee SK. Wnt/β-catenin signaling mediates the antitumor activity of magnolol in colorectal cancer cells. Mol Pharmacol 2012;82:168–77. doi: 10.1124/mol.112.07853510.1124/mol.112.07853522550094Open DOISearch in Google Scholar

72. Li ML, Zhang F, Wang XA, Wu XS, Zhang BT, Zhang N, Wu WG, Wang Z, Weng H, Liu SB, Gao GF, Mu JS, Shu YJ, Bao RF, Cao Y, Lu JH, Gu J, Zhu J, Liu YB. Magnolol inhibits growth of gallbladder cancer cells through the p53 pathway. Cancer Sci 2015;106:1341–50. doi: 10.1111/cas.1276210.1111/cas.12762463801026250568Open DOISearch in Google Scholar

73. Shen J, Ma H, Zhang T, Liu H, Yu L, Li G, Li H, Hu M. Magnolol inhibits the growth of non-small cell lung cancer via inhibiting microtubule polymerization. Cell Physiol Biochem 2017;42:1789–801. doi: 10.1159/00047945810.1159/00047945828746938Open DOISearch in Google Scholar

74. Wu W-N, Beal JL, Doskotch RW. Alkaloids of thalictrum XXX. Eleven minor alkaloids from Thalictrum rugosum. J Nat Prod 1980;43:143–50. doi: 10.1021/np50007a01410.1021/np50007a014Open DOISearch in Google Scholar

75. Levrier C, Rockstroh A, Gabrielli B, Kavallaris M, Lehman M, Davis RA, Sadowski MC, Nelson CC. Discovery of thalicthuberine as a novel antimitotic agent from nature that disrupts microtubule dynamics and induces apoptosis in prostate cancer cells. Cell Cycle 2018;17:652–68. doi: 10.1080/15384101.2017.135651210.1080/15384101.2017.1356512597620628749250Open DOISearch in Google Scholar

76. Levrier C, Sadowski MC, Nelson CC, Davis RA. Cytotoxic C20 diterpenoid alkaloids from the Australian endemic rainforest plant Anopterusmacleayanus. J Nat Prod 2015;78:2908–16. doi: 10.1021/acs.jnatprod.5b0050910.1021/acs.jnatprod.5b0050926600001Open DOISearch in Google Scholar

77. Levrier C, Sadowski MC, Rockstroh A, Gabrielli B, Kavallaris M, Lehman M, Davis RA, Nelson CC. 6α-acetoxyanopterine, a novel structure class of mitotic inhibitor disrupting microtubule dynamics in prostate cancer cells. Mol Cancer Ther 2017;16:3–15. doi: 10.1158/1535-7163.MCT-16-032510.1158/1535-7163.MCT-16-032527760837Open DOISearch in Google Scholar

78. Williams RB, Martin SM, Lawrence JA, Norman VL, O’Neil-Johnson M, Eldridge GR, Starks CM. Isolation and identification of the novel tubulin polymerization inhibitor bifidenone. J Nat Prod 2017;80:616–24. doi: 10.1021/acs.jnatprod.6b0089310.1021/acs.jnatprod.6b0089328335606Open DOISearch in Google Scholar

79. Mukhtar E, Mustafa Adhami V, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014;13:275–84. doi: 10.1158/1535-7163.MCT-13-07912443544510.1158/1535-7163.MCT-13-0791394604824435445Search in Google Scholar

80. Soto E, Keizer RJ, Trocóniz IF, Huitema AD, Beijnen JH, Schellens JH, Wanders J, Cendrós JM, Obach R, Peraire C, Friberg LE, Karlsson MO. Predictive ability of a semi-mechanistic model for neutropenia in the development of novel anti-cancer agents: two case studies. Invest New Drugs 2011;29:984–95. doi: 10.1007/s10637-010-9437-z10.1007/s10637-010-9437-z316055720449627Open DOISearch in Google Scholar

81. Cheng KL, Bradley T, Budman DR. Novel microtubule-targeting agents - the epothilones. Biologics 2008;2:789–811. PMCID: PMC272790010.2147/BTT.S3487272790019707459Search in Google Scholar

82. Baas PW, Ahmad FJ. Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain 2013;136:2937–51. doi: 10.1093/brain/awt15310.1093//awt153Open DOISearch in Google Scholar

83. Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med 1995;332:1004–14. doi: 10.1056/NEJM19950413332150710.1056/NEJM1995041333215077885406Open DOISearch in Google Scholar

84. Lee JJ, Swain SM. Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol 2006;24:1633–42. doi: 10.1200/JCO.2005.04.054310.1200/JCO.2005.04.054316575015Open DOISearch in Google Scholar

85. Ying Z, Xin M, Guanhua D. Microtubule-stabilizing agents: New drug discovery and cancer therapy. Pharmacol Therap 2016;162:134–43. doi: 10.1016/j.pharmthera.2015.12.00610.1016/j.pharmthera.2015.12.00626706241Open DOISearch in Google Scholar

86. Tarade D, Pandey S, McNulty J. Review of cytotoxic CA4 analogues that do not target microtubules, implications for CA4 development. Mini Rev Med Chem 2017;17:1507–14. doi: 10.2174/138955751566616050912582910.2174/138955751566616050912582927156516Open DOISearch in Google Scholar

87. US National Library of Medicine (NLM). [displayed 10 September 2019]. Available at in Google Scholar

88. de Lemos E, Porée FH, Bourin A, Barbion J, Agouridas E, Lannou MI, Commerçon A, Betzer JF, Pancrazi A, Ardisson J. Total synthesis of discodermolide, optimization of the effective synthetic route. Chemistry 2008;14:11092–112. doi: 10.1002/chem.2008014781897316210.1002/chem.20080147818973162Search in Google Scholar

89. Wender PA, Hegde SG, Hubbard RD, Zhang L. Total synthesis of (-)-laulimalide. J Am Chem Soc 2002;124:4956–7. doi: 10.1021/ja025842810.1021/ja025842811982349Open DOISearch in Google Scholar

90. Moffat JG, Rudolph J, Bailey D. Phenotypic screening in cancer drug discovery - past, present and future. Nat Rev Drug Discov 2014;13:588–602. doi: 10.1038/nrd436610.1038/nrd43662503373625033736Open DOISearch in Google Scholar

91. Cortes Cabrera A, Lucena-Agell D, Redondo-Horcajo M, Barasoain I, Díaz JF, Fasching B, Petrone PM. Aggregated compound biological signatures facilitate phenotypic drug discovery and target elucidation. ACS Chem Biol 2016;11:3024–34. doi: 10.1021/acschembio.6b0035810.1021/acschembio.6b0035827564241Open DOISearch in Google Scholar

English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other