Cite

1. LeDantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V. Occurrence of mycobacteria in water treatment lines and in water distribution systems. Appl Environ Microbiol 2002;68:5318-25. PMCID: PMC12993210.1128/AEM.68.11.5318-5325.200212993212406720Search in Google Scholar

2. Sousa S, Bandeira M, Carvalho PA, Duarte A, Jordao L. Nontuberculous mycobacteria pathogenesis and biofilm assembly. Int J Mycobacteriol 2015;4:36-43. doi: 10.1016/j.ijmyco.2014.11.065Search in Google Scholar

3. Halstrom S, Price P, Thomson R. Review: Environmental mycobacteria as a cause of human infection. Int J Mycobacteriol 2015;4:81-91. doi: 10.1016/j.ijmyco.2015.03.002Search in Google Scholar

4. De Groote MA, Huitt G. Infections due to rapidly growing mycobacteria. Clin Infect Dis 2006;42:1756-63. doi: 10.1086/50438116705584Search in Google Scholar

5. Falkinham JO III, Norton CD, LeChevallier MW. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol 2001;67:1225-31. doi: 10.1128/AEM.67.3.1225-1231.2001Search in Google Scholar

6. Taylor RH, Falkinham JO III, Norton CD, LeChevallier MW. Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl Environ Microbiol 2000;66:1702-5. PMCID: PMC9204510.1128/AEM.66.4.1702-1705.20009204510742264Search in Google Scholar

7. Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V. Chlorine disinfection of atypical mycobacteria isolated from a water distribution system. Appl Environ Microbiol. 2002;68:1025-32. PMCID: PMC12373710.1128/AEM.68.3.1025-1032.200212373711872446Search in Google Scholar

8. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12:564-82. PMCID: PMC8892510.1128/CMR.12.4.5648892510515903Search in Google Scholar

9. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils: a review. Food Chem Toxicol 2008;46:446-75. doi: 10.1016/j.fct.2007.09.106Search in Google Scholar

10. Bassole IH, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules 2012;17:3989-4006. doi: 10.3390/molecules17043989Search in Google Scholar

11. Pichersky E, Noel JP, Dudareva N. Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 2006;311:808-11. doi: 10.1126/science.1118510Search in Google Scholar

12. Dorman HJ, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 2000;88:308-16. doi: 10.1046/j.1365-2672.2000.00969.xSearch in Google Scholar

13. Arjomandzadegan M, Emami N, Habibi G, et al. ntimycobacterial activity assessment of three ethnobotanical plants against Mycobacterium Tuberculosis: An In Vitro study. Int J Mycobacteriol 2016;5(Suppl 1):S108-9.10.1016/j.ijmyco.2016.10.02528043492Search in Google Scholar

14. Jerković I, Marijanović Z. Volatile composition screening of Salix spp. nectar honey: benzenecarboxylic acids, norisoprenoids, terpenes, and others. Chem Biodivers 2010;7:2309-25. doi: 10.1002/cbdv.201000021Search in Google Scholar

15. Jerković I, Kranjac M, Marijanović Z, Zekić M, Radonić A, Tuberoso CI. Screening of Satureja subspicata Vis. honey by HPLC-DAD, GC-FID/MS and UV/VIS: prephenate derivatives as biomarkers. Molecules 2016;21:377. doi: 10.3390/molecules21030377Search in Google Scholar

16. The Pherobase: Database of Insect Pheromones and Semiochemicals [displayed 19 Feb 2018]. Available at http://www.pherobase.comSearch in Google Scholar

17. Andrejak C, Almeida DV, Tyagi S, Converse PJ, Ammerman NC, Grosset JH. Characterization of mouse models of Mycobacterium avium complex infection and evaluation of drug combinations. Antimicrob Agents Chemother 2015;59:2129-35. doi: 10.1128/AAC.04841-14Search in Google Scholar

18. Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007;42:321-4. doi: 10.1016/j.ymeth.2007.01.006Search in Google Scholar

19. Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 2002;46:1914-20. doi: 10.1128/AAC.46.6.1914-1920.2002Search in Google Scholar

20. El Kolli M, Laouer H, El Kolli H, Akkal S, Sahli F. Chemicalanalysis, antimicrobial and anti-oxidative properties of Daucus gracilis essential oil and its mechanism of action. Asian Pac J Trop Biomed 2016;6:8-15. doi: 10.1016/j.apjtb.2015.08.004Search in Google Scholar

21. Miksusanti, Jenie BSL, Priosoeryanto BP, Syarief R, Rekso GT. Mode of action Temu Kunci (Kaempferia pandurata) essential oil on E. coli K1. 1 cell determined by leakage of material cell and salt tolerance assays. HAYATI J Biosci 2008;15:56-60. doi: 10.4308/hjb.15.2.56Search in Google Scholar

22. Bajpai VK, Sharma A, Baek KH. Antibacterial mode of action of the essential oil obtained from Chamaecyparis obtusa sawdust on the membrane integrity of selected foodborne pathogens. Food Technol Biotechnol 2014;52:109-18.Search in Google Scholar

23. Kalantzakis G, Blekas G, Pegklidou K, Boskou D. Stability and radical-scavenging activity of heated olive oil and other vegetable oils. Eur J Lipid Sci Tech 2006;108:329-35. doi: 10.1002/ejlt.200500314Search in Google Scholar

24. Sela F, Karapandzova M, Stefkov G, Kulevanova S. Chemical composition of berry essential oils from Juniperus communis L. (Cupressaceae) growing wild in Republic of Macedonia and assessment of the chemical composition in accordance to European Pharmacopoeia. Maced Pharm Bull 2011;57:43-51.10.33320/maced.pharm.bull.2011.57.005Search in Google Scholar

25. Hajdari A, Mustafa B, Nebija D, Miftari E, Quave CL, Novak J. Chemical Composition of Juniperus communis L. cone essential oil and its variability among wild populations in Kosovo. Chem Biodivers 2015;12:1706-17. doi: 10.1002/cbdv.201400439Search in Google Scholar

26. Pepeljnjak S, Kosalec I, Kalođera Z, Blažević N. Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae). Acta Pharm 2005;55:417-22. PMID: 16375831Search in Google Scholar

27. Mastelić J, Miloš M, Kuštrak D, Radonić A. Essential oil and glycosidically bound volatile compounds from the needles of common juniper (Juniperus communis L.). CroatChem Acta 2000;73:585-93.Search in Google Scholar

28. Angioni A, Barra A, Russo MT, Coroneo V, Dessiä S, Cabras P. Chemical Composition of the essential oils of Juniperus from ripe and unripe berries and leaves and their antimicrobial activity. J Agric Food Chem 2003;51:3073-8. doi: 10.1021/jf026203jSearch in Google Scholar

29. Chatzopoulou PS, Katsiotis ST. Study of the essential oil from Juniperus communis “Berries” (Cones) growing wild in Greece. Planta Med 1993;59:554-6. doi: 10.1055/s-2006-959760Search in Google Scholar

30. Höferl M, Stoilova I, Schmidt E, Wanner J, Jirovetz L, Trifonova D, Krastev L, Krastanov A. Chemical composition and antioxidant properties of Juniper Berry (Juniperus communis L.) essential oil. Action of the essential oil on the antioxidant protection of Saccharomyces cerevisiae model organism. Antioxidants (Basel) 2014;3:81-98. doi: 10.3390/antiox3010081Search in Google Scholar

31. Haziri A, Faiku F, Mehmeti A, Govori S, Abazi S, Daci M, Haziri I, Bytyqi-Damoni A, Mele A. Antimicrobial properties of the essential oil of Juniperus communis (L.) growing wild in east part of Kosovo. Am J Pharmacol Toxicol 2013;8:128-33. doi: 10.3844/ajptsp.2013.128.133Search in Google Scholar

32. Glišić SB, Milivojević SŽ, Dimitrijević SI, Orlović AM, Skala DU. Antimicrobial activity of the essential oil and indifferent fractions of Juniperus communis L. and a comparison with some commercial antibiotics. J Serb Chem Soc 2007;72:311-20. doi: 10.2298/JSC0704311GSearch in Google Scholar

33. Orav A, Kailas T, Muurisepp M. Chemical investigation of the essential oil from berries and needles of common juniper (Juniperus communis L.) growing wild in Estonia. Nat Prod Res 2010;24:1789-99. doi: 10.1080/14786411003752037Search in Google Scholar

34. Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 1995;59:201-22. PMCID: PMC23936010.1128/mr.59.2.201-222.19952393607603409Search in Google Scholar

35. Sikkema J, de Bont JA, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 1994;269:8022-8. PMID: 813252410.1016/S0021-9258(17)37154-5Search in Google Scholar

36. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 2005;49:2474-8. doi: 10.1128/ AAC.49.6.2474-2478.2005Search in Google Scholar

37. Kovač J, Šimunović K, Wu Z, Klančnik A, Bucar F, Zhang Q, Smole Možina S. Antibiotic resistance modulation and modes of action of (-)-alpha-pinene in Campylobacter jejuni. PLoS One 2015;10 (4):e0122871. doi: 10.1371/journal.pone.0122871Search in Google Scholar

38. Hammer KA, Carson CF, Riley TV. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol. 2003;95:853-60. doi: 10.1046/j.1365-2672.2003.02059.xSearch in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other