1. bookVolume 66 (2020): Issue 1 (April 2020)
Journal Details
License
Format
Journal
eISSN
1338-4376
First Published
06 Jun 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Livestock Manure Composting in Cold Regions: Challenges and Solutions

Published Online: 11 May 2020
Volume & Issue: Volume 66 (2020) - Issue 1 (April 2020)
Page range: 1 - 14
Received: 29 Jan 2020
Accepted: 23 Mar 2020
Journal Details
License
Format
Journal
eISSN
1338-4376
First Published
06 Jun 2011
Publication timeframe
4 times per year
Languages
English

AKDENIZ, N. 2019. A systematic review of biochar use in animal waste composting. In Waste Management, vol. 88, pp. 291–300. DOI: 10.1016/j.wasman.2019.03.054.10.1016/j.wasman.2019.03.05431079642Search in Google Scholar

AWASTHI, M.K. – CHEN, H. – WANG, Q. – LIU, T. – DUAN, Y. – AWASTHI, S.K. – ZHANG, Z. 2018. Succession of bacteria diversity in the poultry manure composted mixed with clay: Studies upon its dynamics and associations with physicochemical and gaseous parameters. In Bioresource Technology, vol. 267, pp. 618 –625. DOI: 10.1016/j.biortech.2018.07.094.10.1016/j.biortech.2018.07.09430056372Search in Google Scholar

AWASTHI, S.K. – SARSAIYA, S. – AWASTHI, M.K. – LIU, T. – ZHAO, J. – KUMAR, S. – ZHANG, Z. 2019. Changes in global trends in food waste composting: Research challenges and opportunities. In Bioresource Technology, vol. 299. DOI: 10.1016/j.biortech.2019.122555.10.1016/j.biortech.2019.12255531866141Search in Google Scholar

BEFFA, T. – BLANC, M. – MARILLEY, L. – FISCHER, J.L. – LYON, P.-F. – ARAGNO, M. 1996. Taxonomic and metabolic microbial diversity during composting. In The Science of Composting, pp. 149–161. DOI: 10.1007/978-94-009-1569-5_16.10.1007/978-94-009-1569-5_16Search in Google Scholar

BERNAL, M. – ALBURQUERQUE, J. – MORAL, R. 2009. Composting of animal manure and chemical criteria for compost maturity assessment. A review. In Bioresource Technology, vol. 100, no. 22, pp. 5444–5453. DOI:10.1016/j.biortech.2008.11.027.10.1016/j.biortech.2008.11.02719119002Search in Google Scholar

BLINNIKOV, MS. 2011. A geography of Russia and its neighbours. New York, USA : Guilford Press. 448 p. ISBN 9781606239209.Search in Google Scholar

BOGAARD, A. – FRASER, R. – HEATON, T.H.E. – WALLACE, M. – VAIGLOVA, P. – CHARLES, M. – JONES, G. – EVERSHED, R.P. – STYRING, A.K. – ANDERSEN, N.H. – ARBOGAST, R. – BARTOSIEWICZ, L. – GARDEISEN, A. – KANSTRUP, M. – MAIER, U. – MARINOVA, E. – NINOV, L. – SCHÄFER, M. – STEPHAN, E. 2013. Crop manuring and intensive land management by Europe’s first farmers. In Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp.12589–12594.Search in Google Scholar

BUCCHIGNANI, E. – MONTESARCHIO, M. – CATTANEO, L. – MANZI, M.P. – MERCOGLIANO, P. 2014. Regional climate modelling over China with COSMO-CLM: Performance assessment and climate projections. In Journal of Geophysical Research: Atmospheres, vol. 119, no. 21. DOI:10.1002/2014jd022219.10.1002/2014JD022219Search in Google Scholar

CERDA, A. – ARTOLA, A. – FONT, X. – BARRENA, R. – GEA, T. – SÁNCHEZ, A. 2018. Composting of food wastes: Status and challenges. In Bioresource Technology, vol. 248, pp. 57–67. DOI: 10.1016/j.biortech.2017.06.133.10.1016/j.biortech.2017.06.13328693949Search in Google Scholar

CHAUDHARY, D.K. – KIM, J. 2019. New insights into bioremediation strategies for oil-contaminated soil in cold environments. In International Biodeterioration & Biodegradation, vol. 142, pp. 58–72. DOI: 10.1016/j.ibiod.2019.05.001.10.1016/j.ibiod.2019.05.001Search in Google Scholar

CUI, H.-Y. – ZHANG, S.-B. – ZHAO, M.-Y. – ZHAO, Y. – WEI, Z.-M. 2020. Parallel faction analysis combined with two-dimensional correlation spectroscopy reveal the characteristics of mercury-composting-derived dissolved organic matter interactions. In Journal of Hazardous Materials, vol. 384, 121395. DOI: 10.1016/j.jhazmat.2019.121395.10.1016/j.jhazmat.2019.12139531628057Search in Google Scholar

CZEKAŁA, W. – MALIŃSKA, K. – CÁCERES, R. – JANCZAK, D. – DACH, J. – LEWICKI, A. 2016. Co-composting of poultry manure mixtures amended with biochar – The effect of biochar on temperature and C-CO2 emission. In Bioresource Technology, vol. 200, pp. 921–927. DOI:10.1016/j.biortech.2015.11.019.10.1016/j.biortech.2015.11.01926609949Search in Google Scholar

DABNEY, S.M. – DELGADO, J.A. – REEVES, D.W. 2001. Using winter cover crops to improve soil and water quality. In Communication in Soil Science and Plant Analysis, vol. 32, no. 7 8, pp. 1221–1250. DOI: 10.1081/css-100104110.10.1081/CSS-100104110Search in Google Scholar

EL-NAGGAR, A. – LEE, S.S. – RINKLEBE, J. – FAROOQ, M. – SONG, H. – SARMAH, A.K. – OK, Y.S. 2019. Biochar application to low fertility soils: A review of current status, and future prospects. In Geoderma, vol. 337, pp. 536–554. DOI: 10.1016/j.geoderma.2018.09.034.10.1016/j.geoderma.2018.09.034Search in Google Scholar

ENGLER, C.R. – JORDAN, E.R. – MCFARLAND, M.J. – LACEWELL, R.D.1999. Economics and environmental impact of biogas production as a manure management strategy. In Texas Aanimal Manure Management Conference : proceedings. College Station, TX, USA: Texas A & M University.Search in Google Scholar

FOURTI, O. 2013. The maturity tests during the composting of municipal solid wastes. In Resources Conservation and Recycling, vol. 72, pp. 43 –49. DOI: 10.1016/j.resconrec.2012.12.001.10.1016/j.resconrec.2012.12.001Search in Google Scholar

GOU, C. – WANG, Y. – ZHANG, X. – LOU, Y. – GAO, Y. 2017. Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions. In Bioresource Technology, vol. 243, pp. 339–346. DOI: 10.1016/j.biortech.2017.06.097.10.1016/j.biortech.2017.06.097Search in Google Scholar

GUO, X.-X. – LIU, H.-T. – ZHANG, J. 2020. The role of biochar in organic waste composting and soil improvement: A review. In Waste Management, vol. 102, pp. 884–899. DOI: 10.1016/j.wasman.2019.12.003.10.1016/j.wasman.2019.12.003Search in Google Scholar

HE, Z. – PAGLIARI, P.H. – WALDRIP, H.M. 2016. Applied and environmental chemistry of animal manure: A Review. In Pedosphere, vol. 26, no. 6, pp. 779–816. DOI: 10.1016/s1002-0160(15)60087-x.10.1016/S1002-0160(15)60087-XSearch in Google Scholar

HORN, H.V. – WILKIE, A. – POWERS, W. – NORDSTEDT, R. 1994. Components of dairy manure management Systems. In Journal of Dairy Science, vol. 77, no. 7, pp. 2008–2030. DOI: 10.3168/jds.s0022-0302 (94)77147-2.Search in Google Scholar

HOU, N. – WEN, L. – CAO, H. – LIU, K. – AN, X. – LI, D. – LI, C. 2017. Role of psychrotrophic bacteria in organic domestic waste composting in cold regions of China. In Bioresource Technology, vol. 236, pp. 20 –28. DOI: 10.1016/j.biortech.2017.03.166.10.1016/j.biortech.2017.03.16628390273Search in Google Scholar

HU, Y. – CHENG, H. – TAO, S. 2017. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. In Environment International, vol. 107, pp. 111 –130. DOI: 10.1016/j.envint.2017.07.003.10.1016/j.envint.2017.07.00328719840Search in Google Scholar

JIANG, J. – LIU, X. – HUANG, Y. – HUANG, H. 2015. Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting. In Waste Management, vol. 39, pp. 78 –85. DOI: 10.1016/j.wasman.2015.02.025.10.1016/j.wasman.2015.02.02525769536Search in Google Scholar

JURADO, M. – LÓPEZ, M.J. – SUÁREZ-ESTRELLA, F. – VARGAS-GARCÍA, M.C. – LÓPEZ-GONZÁLEZ, J.A. – MORENO, J. 2014. Exploiting composting biodiversity: Study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting. In Bioresource Technology, vol. 162, pp. 283–293. DOI: 10.1016/j.biortech.2014.03.145.10.1016/j.biortech.2014.03.14524759645Search in Google Scholar

KIANIRAD, M. – MUAZARDALAN, M. – SAVAGHEBI, G. – FARAHBAKHSH, M. – MIRDAMADI, S. 2009. Effects of temperature treatment on corncob composting and reducing of composting time: a comparative study. In Waste Management & Research, vol. 28, no. 10, pp. 882–887. DOI:10.1177/0734242x09342359.10.1177/0734242X0934235919710112Search in Google Scholar

KOVÁČIK, P. – KOZÁNEK, M. – TAKÁČ, P. – GALLIKOVÁ, M. – VARGA, L. 2010. The effect of pig manure fermented by larvae of houseflies on the yield parameters of sunflowers (Helinthus annul L.). In Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. LVIII (58), no. 2, pp. 147–153.Search in Google Scholar

KOVÁČIK, P. – ŽOFAJOVÁ, A. – ŠIMANSKÝ, V. – HALÁSZOVÁ, K. 2016. Spring barley yield parameters after lignite, sodium humate and nitrogen utilization. In Agriculture (Poľnohospodárstvo), vol. 62, no. 3, pp. 80–89. DOI: 10.1515/agri-2016-0009.10.1515/agri-2016-0009Search in Google Scholar

LI, H. – LU, J. – ZHANG, Y. – LIU, Z. 2018. Hydrothermal liquefaction of typical livestock manure in China: Biocrude oil production and migration of heavy metals. In Journal of Analytical and Applied Pyrolysis, vol. 135, pp. 133–140. DOI: 10.1016/j.jaap.2018.09.010.10.1016/j.jaap.2018.09.010Search in Google Scholar

LI, J. – BAO, H. – XING, W. – YANG, J. – LIU, R. – WANG, X. – WU, F. 2019. Succession of fungal dynamics and their influence on physicochemical parameters during pig manure composting employing with pine leaf biochar. In Bioresource Technology, vol. 297, 122377. DOI: 10.1016/j.biortech.2019.122377.10.1016/j.biortech.2019.12237731734062Search in Google Scholar

LI, S.Q. – YAN, L. – XU, J.G. – LIU, D.Y. 2012. Nitrogen transformation during pig manure composting at low temperature. In Advanced Material Research, vol. 433440, pp. 1226 –1231. DOI: 10.4028/www.scientific.net/amr.433-440.1226.10.4028/www.scientific.net/AMR.433-440.1226Search in Google Scholar

LIU, H. – WANG, L. – LEI, M. 2019. Positive impact of biochar amendment on thermal balance during swine manure composting at relatively low ambient temperature. In Bioresource Technology, vol. 273, pp. 25–33. DOI: 10.1016/j.biortech.2018.10.033.10.1016/j.biortech.2018.10.03330399607Search in Google Scholar

LIU, L. – WANG, S. – GUO, X. – ZHAO, T. – ZHANG, B. 2018. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. In Waste Management, vol. 73, pp. 101–112. DOI: 10.1016/j.wasman.2017.12.026.10.1016/j.wasman.2017.12.02629279244Search in Google Scholar

LOYON, L. 2017. Overview of manure treatment in France. In Waste Management, vol. 61, pp. 516 –520. DOI: 10.1016/j.wasman.2016.11.040.10.1016/j.wasman.2016.11.04027955906Search in Google Scholar

MAAYER, P.D. – ANDERSON, D. – CARY, C. – COWAN, D.A. 2014. Some like it cold: understanding the survival strategies of psychrophiles. In EMBO Reports, vol. 15, no. 5, pp. 508 –517. DOI: 10.1002/embr.201338170.10.1002/embr.201338170421008424671034Search in Google Scholar

MARGESIN, R. – CIMADOM, J. – SCHINNER, F. 2006. Biological activity during composting of sewage sludge at low temperatures. In International Biodeterioration & Biodegradation, vol. 57, no. 2, pp. 88–92. DOI: 10.1016/j.ibiod.2005.12.001.10.1016/j.ibiod.2005.12.001Search in Google Scholar

MASSÉ, D.I. – MASSE, L. 2001. The effect of temperature on slaughterhouse wastewater treatment in anaerobic sequencing batch reactors. In Bioresource Technology, vol. 76, no. 2, pp. 91–98. DOI: 10.1016/s0960-8524(00)00105-x.10.1016/S0960-8524(00)00105-XSearch in Google Scholar

MINOBE, S. – KUWANO-YOSHIDA, A. – KOMORI, N. – XIE, S.-P. – SMALL, R.J. 2008. Influence of the Gulf Stream on the troposphere. In Nature, vol. 452, no. 7184, pp. 206 –209. DOI: 10.1038/nature06690.10.1038/nature0669018337820Search in Google Scholar

NAKAMURA, K. – HARUTA, S. – NGUYEN, H.L. – ISHII, M. – IGARASHI, Y. 2004. Enzyme production-based approach for determining the functions of microorganisms within a community. In Applied and Environmental Microbiology, vol. 70, no. 6, pp. 3329–3337. DOI: 10.1128/aem.70.6.3329-3337.2004.10.1128/AEM.70.6.3329-3337.200442776115184128Search in Google Scholar

ONWOSI, C.O. – IGBOKWE, V.C. – ODIMBA, J.N. – EKE, I.E. – NWANKWOALA, M.O. – IROH, I.N. – EZEOGU, L.I. 2017. Composting technology in waste stabilization: On the methods, challenges and future prospects. In Journal of Environmental Management, vol. 190, pp. 140–157. DOI: 10.1016/j.jenvman.2016.12.051.10.1016/j.jenvman.2016.12.05128040590Search in Google Scholar

PHILIPPE, F.-X. – NICKS, B. 2015. Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. In Agriculture, Ecosystem & Environment, vol. 199, pp. 10–25. DOI: 10.1016/j.agee.2014.08.015.10.1016/j.agee.2014.08.015Search in Google Scholar

PRATT, C. – REDDING, M. – HILL, J. – MUDGE, S.R. – WESTERMANN, M. – PAUNGFOO-LONHIENNE, C. – SCHMIDT, S. 2014. Assessing refrigerating and freezing effects on the biological/chemical composition of two livestock manure. In Agriculture, Ecosystem & Environment, vol. 197, pp. 288–292. DOI: 10.1016/j.agee.2014.08.012.10.1016/j.agee.2014.08.012Search in Google Scholar

REYES-TORRES, M. – OVIEDO-OCAÑA, E. – DOMINGUEZ, I. – KOMILIS, D. – SÁNCHEZ, A. 2018. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. In Waste Management, vol. 77, pp. 486–499. DOI: 10.1016/j.wasman.2018.04.037.10.1016/j.wasman.2018.04.03729709309Search in Google Scholar

RICO, C. – GARCÍA, H. – RICO, J. 2011. Physical–anaerobic–chemical process for treatment of dairy cattle manure. In Bioresource Technology, vol. 102, no. 3, pp. 2143 –2150. DOI: 10.1016/j.biortech.2010.10.068.10.1016/j.biortech.2010.10.06821051223Search in Google Scholar

RYCKEBOER, J. – MERGAERT, J. – COOSEMANS, J. – DEPRINS, K. – SWINGS, J. 2003. Microbiological aspects of biowaste during composting in monitored compost bin. In Journal of Applied Microbiology, vol. 94, no. 1, pp. 127–137. DOI: 10.1046/j.1365-2672.2003.01800.x.10.1046/j.1365-2672.2003.01800.x12492933Search in Google Scholar

SAADY, N.M.C. – MASSÉ, D.I. 2013. Psychrophilic anaerobic digestion of lignocellulosic biomass: A characterization study. In Bioresource Technology, vol. 142, pp. 663 –671. DOI: 10.1016/j.biortech.2013.05.089.10.1016/j.biortech.2013.05.08923796576Search in Google Scholar

SALUDES, R. – IWABUCHI, K. – KAYANUMA, A. – SHIGA, T. 2007. Composting of dairy cattle manure using a thermophilic–mesophilic sequence. In Biosystems Engineering, vol. 98, no. 2, pp. 198 –205. DOI: 10.1016/j.biosystemseng.2007.07.003.10.1016/j.biosystemseng.2007.07.003Search in Google Scholar

SÁNCHEZ, Ó.J. – OSPINA, D.A. – MONTOYA, S. 2017. Compost supplementation with nutrients and microorganisms in composting process. In Waste Management, vol. 69, pp. 136–153. DOI: 10.1016/j.wasman.2017.08.012.10.1016/j.wasman.2017.08.01228823698Search in Google Scholar

SANCHEZ-MONEDERO, M. – CAYUELA, M. – ROIG, A. – JINDO, K. – MONDINI, C. – BOLAN, N. 2018. Role of biochar as an additive in organic waste composting. In Bioresource Technology, vol. 247, pp. 1155–1164. DOI: 10.1016/j.biortech.2017.09.193.10.1016/j.biortech.2017.09.19329054556Search in Google Scholar

STEMPVOORT, D.V. – BIGGAR, K. 2008. Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. In Cold Regions Science and Technology, vol. 53, no. 1, pp. 16 –41. DOI: 10.1016/j.coldregions.2007.06.009.10.1016/j.coldregions.2007.06.009Search in Google Scholar

SUBBOTIN, I. – BRIUKHANOV, A. – VASILEV, E. 2017. Factor analysis of environmental impact of manure utilization. In Engineering for Rural Development : Proceeding from 16. International Conference, pp. 625629. DOI:10.22616/erdev2017.16.n124.10.22616/ERDev2017.16.N124Search in Google Scholar

SUN, Q. – CHEN, J. – WEI, Y. – ZHAO, Y. – WEI, Z. – ZHANG, H. – XIE, X. 2019. Effect of semi-continuous replacements of compost materials after inoculation on the performance of heat preservation of low temperature composting. In Bioresource Technology, vol. 279, pp. 50 –56. DOI: 10.1016/j.biortech.2019.01.090.10.1016/j.biortech.2019.01.09030711752Search in Google Scholar

SUN, Q. – WU, D. – ZHANG, Z. – ZHAO, Y. – XIE, X. – WU, J. – WEI, Z. 2017. Effect of cold-adapted microbial agent inoculation on enzyme activities during composting startup at low temperature. In Bioresource Technology, vol. 244, pp. 635–640. DOI: 10.1016/j.biortech.2017.08.010.10.1016/j.biortech.2017.08.01028810218Search in Google Scholar

TIAN, X. – YANG, T. – HE, J. – CHU, Q. – JIA, X. – HUANG, J. 2017. Fungal community and cellulose-degrading genes in the composting process of Chinese medicinal herbal residues. In Bioresource Technology, vol. 241, pp. 374–383. DOI: 10.1016/j.biortech.2017.05.116.10.1016/j.biortech.2017.05.11628578278Search in Google Scholar

TRAN, Q.N.M. – MIMOTO, H. – NAKASAKI, K. 2015. Inoculation of lactic acid bacterium accelerates organic matter degradation during composting. In International Biodeterioration & Biodegradation, vol. 104, pp. 377–383. DOI:10.1016/j.ibiod.2015.07.007.10.1016/j.ibiod.2015.07.007Search in Google Scholar

WANG, K. – LI, W. – LI, Y. – GONG, X. – WU, C. – REN, N. 2013. The modelling of combined strategies to achieve thermophilic composting of sludge in cold region. In International Biodeterioration & Biodegradation, vol. 85, pp. 608–616. DOI: 10.1016/j.ibiod.2013.03.005.10.1016/j.ibiod.2013.03.005Search in Google Scholar

WANG, L. – WANG, L. – WANG, D. – LI, J. 2013. Isolation and application of thermophilic and psychrophilic microorganisms in the composting process. In Waste and Biomass Valorization, vol. 5, no. 3, pp. 433–440. DOI: 10.1007/s12649-013-9253-8.10.1007/s12649-013-9253-8Search in Google Scholar

WANG, P. – CHANGA, C. – WATSON, M. – DICK, W. – CHEN, Y. – HOITINK, H. 2004. Maturity indices for composted dairy and pig manure. In Soil Biology & Biochemistry, vol. 36, no. 5, pp. 767–776. DOI: 10.1016/j.soilbio.2003.12.012.10.1016/j.soilbio.2003.12.012Search in Google Scholar

WANG, X. – HELGASON, B. – WESTBROOK, C. – BEDARD-HAUGHN, A. 2016. Effect of mineral sediments on carbon mineralization, organic matter composition and microbial community dynamics in a mountain peatland. In Soil Biology & Biochemistry, vol. 103, pp. 16–27. DOI: 10.1016/j.soilbio.2016.07.025.10.1016/j.soilbio.2016.07.025Search in Google Scholar

WAQAS, M. – NIZAMI, A. – ABURIAZAIZA, A. – BARAKAT, M. – ASAM, Z. – KHATTAK, B. – RASHID, M. 2019. Untapped potential of zeolites in optimization of food waste composting. In Journal of Environmental Management, vol. 241, pp. 99– 112. DOI: 10.1016/j.jenvman.2019.04.014.10.1016/j.jenvman.2019.04.01430986667Search in Google Scholar

WEI, L. – SHUTAO, W. – JIN, Z. – TONG, X. 2014. Biochar influences the microbial community structure during tomato stalk composting with chicken manure. In Bioresource Technology, vol. 154, pp. 148 –154. DOI: 10.1016/j.biortech.2013.12.022.10.1016/j.biortech.2013.12.02224384321Search in Google Scholar

WEI, Y. – LI, J. – SHI, D. – LIU, G. – ZHAO, Y. – SHIMAOKA, T. 2017. Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. In Resource, Conservation & Recycling, vol. 122, pp. 51–65. DOI: 10.1016/j.resconrec.2017.01.024.10.1016/j.resconrec.2017.01.024Search in Google Scholar

WEI, Y. – ZHAO, Y. – ZHAO, X. – GAO, X. – ZHENG, Y. – ZUO, H. – WEI, Z. 2020. Roles of different humin and heavy-metal resistant bacteria from composting on heavy metal removal. In Bioresource Technology, vol. 296, 122375. DOI: 10.1016/j.biortech.2019.122375.10.1016/j.biortech.2019.12237531734063Search in Google Scholar

WEI, Z. – XI, B. – ZHAO, Y. – WANG, S. – LIU, H. – JIANG, Y. 2007. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. In Chemosphere, vol. 68, no. 2, pp. 368–374. DOI: 10.1016/j.chemosphere.2006.12.067.10.1016/j.chemosphere.2006.12.06717313970Search in Google Scholar

WILLIAMS, R.T. – MARKS, P.J. 1991. Optimization of composting for explosives contaminated soil. Final Report. CETHA-TS-CR-91053. Washington DC : U.S. Army Corps of Engineers.10.21236/ADA246345Search in Google Scholar

XI, B. – ZHAO, X. – HE, X. – HUANG, C. – TAN, W. – GAO, R. – LI, D. 2016. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting. In Bioresource Technolology, vol. 219, pp. 204–211. DOI: 10.1016/j.biortech.2016.07.120.10.1016/j.biortech.2016.07.12027494101Search in Google Scholar

XIAO, R. – AWASTHI, M.K. – LI, R. – PARK, J. – PENSKY, S.M. – WANG, Q. – ZHANG, Z. 2017. Recent developments in biochar utilization as an additive in organic solid waste composting: A review. In Bioresource Technology, vol. 246, pp. 203–213. DOI: 10.1016/j.biortech.2017.07.090.10.1016/j.biortech.2017.07.090Search in Google Scholar

XIE, X.-Y. – ZHAO, Y. – SUN, Q.-H. – WANG, X.-Q. – CUI, H.-Y. – ZHANG, X. – WEI, Z.-M. 2017. A novel method for contributing to composting start-up at low temperature by inoculating cold-adapted microbial consortium. In Bioresource Technology, vol. 238, pp. 39–47. DOI: 10.1016/j.biortech.2017.04.036.10.1016/j.biortech.2017.04.036Search in Google Scholar

XU, Z. – WU, H. – WU, M. 2010. Energy performance and consumption for biogas heat pump air conditioner. In Energy, vol. 35, no. 12, pp. 5497–5502. DOI: 10.1016/j.energy.2010.01.040.10.1016/j.energy.2010.01.040Search in Google Scholar

YAO, Y. – HUANG, G. – AN, C. – CHEN, X. – ZHANG, P. – XIN, X. – AGNEW, J. 2019. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts. In Renewable and Sustainable Energy Reviews, vol. 119, 109494. DOI: 10.1016/j.rser.2019.109494.10.1016/j.rser.2019.109494Search in Google Scholar

YAO, Y. – HUANG, G.H. – AN, C.J. – CHENG, G.H. – WEI, J. 2017. Effects of freeze–thawing cycles on desorption behaviors of PAH-contaminated soil in the presence of a biosurfactant: a case study in western Canada. In Environtal Science: Processes & Impacts, vol. 19, no. 6, pp. 874–882. DOI: 10.1039/c7em00084g.10.1039/C7EM00084GSearch in Google Scholar

YU, X.-F. – BORJIGIN, Q. – GAO, J.-L. – WANG, Z.-G. – HU, S.-P. – BORJIGIN, N. – HAN, S.-C. 2019. Exploration of the key microbes and composition stability of microbial consortium GF-20 with efficiently decomposes corn stover at low temperatures. In Journal of Integrative Agriculture, vol. 18, no. 8, pp. 1893–1904. DOI: 10.1016/s2095-3119(19)62609-2.10.1016/S2095-3119(19)62609-2Search in Google Scholar

ZHANG, C. – XU, Y. – ZHAO, M. – RONG, H. – ZHANG, K. 2018. Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting. In Journal of Hazardous Material, vol. 344, pp. 163–168. DOI: 10.1016/j.jhazmat.2017.10.01.7.Search in Google Scholar

ZHU, L. – WEI, Z. – YANG, T. – ZHAO, X. – DANG, Q. – CHEN, X. – ZHAO, Y. 2020. Core microorganisms promote the transformation of DOM fractions with different molecular weights to improve the stability during composting. In Bioresource Technology, vol. 299, 122575. DOI: 10.1016/j.biortech.2019.122575.10.1016/j.biortech.2019.12257531864086Search in Google Scholar

ZUBAIR, M. – WANG, S. – ZHANG, P. – YE, J. – LIANG, J. – NABI, M. – CAI, Y. 2020. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. In Bioresource Technology, vol. 301, 122823. DOI: 10.1016/j.biortech.2020.122823.10.1016/j.biortech.2020.12282331987489Search in Google Scholar

Recommended articles from Trend MD