Open Access

Investigation of the Effects of L-carnitine and magnesium on Oxidative Stress and Cytokines in the Tissue of Experimental diabetic rats


Cite

The aim of this study was to determine the effects of L-carnitine and magnesium on the levels of tissue malondialdehyde, 8-hydroxy-2’-deoxyguanosine, and cytokines (tumor necrosis factor alpha, interleukin-6) in streptozotocin-induced experimental diabetes in rats. Eighty male Wistar albino rats (200-250 g) were divided into 8 groups with 10 rats in each group. The groups received the following treatments: Control group; 2 ml distilled water (by gavage); Group 2: 50 mg/kg (b.w.) i.p. streptozotocin; Group 3: 125 mg/kg (b.w.) magnesium; Group 4: 300 mg/kg (b.w.) L-carnitine; Group 5: 125 mg/kg (b.w.) magnesium +300 mg/kg (b.w.) L-carnitine; Group 6: 50 mg/kg (b.w.) streptozotocin +125 mg/kg (b.w.) magnesium; Group 7: 50 mg/kg (b.w.) streptozotocin +300 mg/kg (b.w.) L-carnitine and Group 8: 50 mg/kg (b.w.) streptozotocin +125 mg/ kg (b.w.) magnesium+300 mg/kg (b.w.) L-carnitine administered for 4 weeks. Liver and kidney malondialdehyde, 8-hydroxy-2’-deoxyguanosine, tumor necrosis factor alpha and interleukin-6 levels did not change in the magnesium, L-carnitine, and magnesium + L-carnitine groups compared to the control. The highest levels of malondialdehyde, 8-hydroxy-2’-deoxyguanosine, tumor necrosis factor alpha and interleukin-6 were determined only in the group with diabetes (Group 2). Lipid peroxidation, DNA damage, and cytokine levels were significantly reduced in diabetic animals with the administration of magnesium and L-carnitine separately or in combination. Based on the obtained results it can be concluded that magnesium and L-carnitine may have antidiabetic effects, especially in combination.

eISSN:
1820-7448
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Veterinary Medicine