Cite

1. Bushinsky DA, Coe FL, Moe OW. Nephrolithiasis. In: Brenner BM, editor. The kidney. 8th ed. Vol 2. Philadelphia (PA): Saunders; 2008. p. 1299-1375.Search in Google Scholar

2. Watts RWE. Idiopathic urinary stone disease: possible polygenic aetiological factors. Q J Med 2005;98:241-6. doi: 10.1093/qjmed/hci04110.1093/qjmed/hci041Search in Google Scholar

3. Sakhaee K. Nephrolithiasis as a systemic disorder. Curr Opin Nephrol Hypertens 2008;17:304-9. doi: 10.1097/ MNH.0b013e3282f8b34d10.1097/MNH.0b013e3282f8b34dSearch in Google Scholar

4. Coe FL, Parks JH. New insights into pathophysiology and treatment of nephrolithiasis: new research venues. J Bone M i n e r R e s 1 9 9 7 ; 1 2 : 5 2 2 - 3 3 . d o i : 1 0 . 1 3 5 9 / jbmr.1997.12.4.522Search in Google Scholar

5. Coe FL, Parks JH. Pathogenesis and treatment of urolithiasis.Search in Google Scholar

In: Seldin DW, Giebisch G, editors. The kidney. 3rd. ed. Vol II. Philadelphia (PA): Lippincott Williams & Wilkins; 2000. p. 1841-67.Search in Google Scholar

6. Daudon M, Donsimoni R, Hennequin C, Fellahi S, Le Moel G, Paris M, Troupel S, Lacour B. Sex- and age-related composition of 10617 calculi analyzed by infrared spectroscopy. Urol Res 1995;23:319-26. doi: 10.1007/ BF0030002110.1007/BF00300021Search in Google Scholar

7. Yoshida O, Okada Y. Epidemiology of urolithiasis in Japan: a chronological and geographical study. Urol Int 1990;45:104-11. doi: 10.1159/00028168010.1159/000281680Search in Google Scholar

8. Robertson WG, Peacock M. The cause of idiopathic calcium stone disease: hypercalciuria or hyperoxaluria? Nephron 1980;26:105-10. doi: 10.1159/00018196310.1159/000181963Search in Google Scholar

9. Pak CYC, Adams-Huet B, Poindexter JR, Pearle MS, Peterson RD, Moe OW. Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int 2004;66:2032-7. doi: doi:10.1111/j.1523-1755.2004.00975.x10.1111/j.1523-1755.2004.00975.xSearch in Google Scholar

10. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest 2005;115:2598-608. PMID: 1620019210.1172/JCI26662Search in Google Scholar

11. Williams AW, Wilson DM. Dietary intake, absorption, metabolism and excretion of oxalate. Semin Nephrol 1990;10:2-8. PMID: 2404326Search in Google Scholar

12. Hautman RE. The stomach: a new and powerful oxalate absorption site in man. J Urol 1993;149:1401-4. PMID: 850177610.1016/S0022-5347(17)36400-5Search in Google Scholar

13. Chen Z, Ye Z, Zeng L, Yang W. Clinical investigation on gastric oxalate absorption. Chin Med J 2003;116:1749-51.Search in Google Scholar

PMID:14642151Search in Google Scholar

14. Hagler L, Herman RH. Oxalate metabolism. Am J Clin Nutr 1973;26:758-65. PMID: 457688110.1093/ajcn/26.6.7584576881Search in Google Scholar

15. Singh PP, Kothari LK, Sharma DC, Saxena SN. Nutritional value of foods in relation to their oxalic acid conetent. Am J Clin Nutr 1972;25:1147-52. PMID: 508603710.1093/ajcn/25.11.11475086037Search in Google Scholar

16. Brinkley L, McGuire J, Gregory J, Pak CY. Bioavailability of oxalate in foods. Urology 1981;17:534-8. PMID: 724544310.1016/0090-4295(81)90069-8Search in Google Scholar

17. Caliskan M. The metabolism of oxalic acid. Turk J Zoo 2000;24:103-6.Search in Google Scholar

18. Tang M, Larson-Meyer E, Liebman M. Effect of cinnamon and turmeric on urinary oxalate excretion, plasma lipids, and plasma glucose in healthy subjects. Am J Clin Nutr 2008;87:1262-7. PMID: 1846924810.1093/ajcn/87.5.126218469248Search in Google Scholar

19. Trinchieri A, Mandressi A, Luongo P, Longo G, Pisani E.Search in Google Scholar

The infl uence of diet on urinary risk factors for stones in healthy subjects and idiopathic renal calcium stone formers.Search in Google Scholar

Br J Urol 1991;67:230-6. PMID: 202180610.1093/bja/67.2.230-bSearch in Google Scholar

20. Prenen JAC, Boer P, Dorhout-Mess EJ. Absorption kinetics of oxalate from oxalate-rich food in man. Am J Clin Nutr 1984;40:1007-10. PMID: 649637910.1093/ajcn/40.5.10076496379Search in Google Scholar

21. Holmes RP, Goodman HO, Assimos DG. Dietary oxalate and its intestinal absorption. Scanning Microsc 1995;9:1109-20.Search in Google Scholar

PMID: 8819892Search in Google Scholar

22. Holmes RP, Assimos DG. The impact of dietary oxalate on kidney stone formation. Urol Res 2004;32:311-6. PMID: 1522124510.1007/s00240-004-0437-315221245Search in Google Scholar

23. Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int 2001;59:270-6. doi: 10.1046/j.1523-1755.2001.00488.x10.1046/j.1523-1755.2001.00488.x11135080Search in Google Scholar

24. Holmes RP, Kennedy M. Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int 2000;57:1662-7. doi:10.1046/j.1523-1755.2000.00010.x10.1046/j.1523-1755.2000.00010.x10760101Search in Google Scholar

25. Siener R, Ebert D, Nicolay C, Hesse A. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int 2003;63:1037-43. doi: 10.1046/j.1523-1755.2003.00807. xSearch in Google Scholar

26. Tiselius HG, Ahistrand C, Lundstrom B, Nilsson MA. [14C]Oxalate Absorption by normal persons, calcium oxalate stone formers, and patients with surgically disturbed intestinal function. Clin Chem 1981;27:1682-5. PMID: 728531910.1093/clinchem/27.10.1682Search in Google Scholar

27. Dawson KA, Allison MJ, Hartman PA. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl Environ Microbiol 1980;40:833-9. PMID: 742562810.1128/aem.40.4.833-839.19802916677425628Search in Google Scholar

28. Allison MJ, Cook HM, Milne DB, Gallagher S, Clayman RV. Oxalate degradation by gastrointestinal bacteria from humans. J Nutr 1986;116:455-60. PMID: 395077210.1093/jn/116.3.4553950772Search in Google Scholar

29. Argenzio RA, Liacos JA, Allison MJ. Intestinal oxalatedegrading bacteria reduce oxalate absorption and toxicity in guinea pigs. J Nutr 1988;118:787-92. PMID: 337334310.1093/jn/118.6.787Search in Google Scholar

30. Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM, Cave DR. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc N e p h r o l 2 0 0 8 ; 1 9 : 11 9 7 - 2 0 3 . d o i : 1 0 . 1 6 8 1 / ASN.2007101058Search in Google Scholar

31. Zarembski PM, Hodgkinson A. Some factors infl uencing the urinary excretion of oxalic acid in man. Clin Chim Acta 1969;25:1-10. PMID: 497880010.1016/0009-8981(69)90218-6Search in Google Scholar

32. Unruh GEV, Voss S, Sauerbruch T, Hesse A. Dependence of oxalate absorption on the daily calcium intake. J Am Soc Nephrol 2004;15:1567-73. PMID: 1515356710.1097/01.ASN.0000127864.26968.7FSearch in Google Scholar

33. Hanes DA, Weaver CM, Heany RP, Wastney M. Absorption of calcium oxalate does not require dissociation in rats. J Nutr 1999;129:170-3. PMID: 991589510.1093/jn/129.1.170Search in Google Scholar

34. Liebman M, Chai W. Effect of dietary calcium on urinary oxalate excretion after oxalate loads. Am J Clin Nutr 1997;65:1453-9. doi: 10.1016/0002-8223(93)91530Search in Google Scholar

35. Liebman M, Costa G. Effects of calcium and magnesium on urinary oxalate excretion after oxalate loads. J Urol 2000;163:1565-9. doi: PMID: 1075188910.1016/S0022-5347(05)67680-XSearch in Google Scholar

36. Saunders DR, Sillery J, McDonald GB. Regional differences in oxalate absorption by rat intestine: evidence for excessive absorption by the colon in steatorrhoea. Gut 1975;16:543-8.10.1136/gut.16.7.54314109761158192Search in Google Scholar

PMID: 1158192Search in Google Scholar

37. Caspary WF, Tonissen J, Lankisch PG. “Enteral” hyperoxaluria. Effect of cholesyramine, calcium, neomycin, and bile acids on intestinal oxalate absorption in man. Acta Hepatogastroenterol 1977;24:193-200. PMID: 88346810.1007/BF01851584410086Search in Google Scholar

38. Saso L, Grippa E, Gatto MT, Silvestrini B. Inhibition of calcium oxalate precipitation by bile salts. Int J Urol 2001;8:124-7. PMID: 1126033710.1046/j.1442-2042.2001.00264.x11260337Search in Google Scholar

39. Taylor EN, Curhan GC. Oxalate intake and the risk for nephrolithiasis. J Am Soc Nephrol 2007;18:2198-204. doi: 10.1681/ASN.200702021910.1681/ASN.200702021917538185Search in Google Scholar

40. Poore RE, Hurst CH, Assimos DG, Holmes RP. Pathways of hepatic oxalate synthesis and their regulation. Am J Physiol Cell Physiol 1997;272:C289-94. PMID: 903883510.1152/ajpcell.1997.272.1.C2899038835Search in Google Scholar

41. Yanagawa M, Maeda-Nakai E, Yamakawa K, Yamamoto I, Kawamura J, Tada S, Ichiyama A. The formation of oxalate from glycolate in rat and human liver. Biochim Biophys Acta 1990;1036:24-33. PMID: 222382310.1016/0304-4165(90)90209-FSearch in Google Scholar

42. Miller H, Barceloux DG, Krenzelok EP, Olson K, Watson W. American academy of clinical toxicology practice guidelines on the treatment of ethylene glycol poisoning.Search in Google Scholar

Clin Toxicol 1999;37:537-60. PMID: 1049763310.1016/S0008-6223(99)00023-8Search in Google Scholar

43. Langman CB. The molecular basis of kidney stones. Curr Opin Pediatr 2004;16:188-93. PMID: 1502120010.1097/00008480-200404000-00013Search in Google Scholar

44. Richardson KE, Tolbert NE. Oxidation of glyoxylic acid to oxalic acid by glycolic acid oxidase. J Biol Chem 1961;236:1280-4. PMID: 1374129910.1016/S0021-9258(18)64165-1Search in Google Scholar

45. Haimovici J, Beck JS, Molla-Hosseini C, Vallerand D, Haddad P. Different modulation of hepatocellular Na+/H+ exchange activity by insulin and EGF. Am J Physiol Gastrointest Liver Physiol 1994;267:G364-70. PMID: 794323210.1152/ajpgi.1994.267.3.G3647943232Search in Google Scholar

46. Selvam R. Calcium oxalate stone disease: role of lipid peroxidation and antioxidants. Urol Res 2002;30:35-47.10.1007/s00240-001-0228-z11942324Search in Google Scholar

PMID: 11942324Search in Google Scholar

47. Finlayson B. Physicochemical aspects of urolithiasis. Kidney Int 1978;13:344-60. doi: 10.1038/ki.1978.5310.1038/ki.1978.53351263Search in Google Scholar

48. Verkoelen CF, Van Der Boom BG, Houtsmuller AB, Schroder FH, Romijn JC. Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol Renal Physiol 1998;274:F958-65.10.1152/ajprenal.1998.274.5.F9589612335Search in Google Scholar

PMID: 9612335Search in Google Scholar

49. Phulwinder KG, Thurgood LA, Ryall RL. Effect of urine fractionation on attachment of calcium crystals to renal epithelial cells: implications for studying renal calculogenesis.Search in Google Scholar

Am J Physiol Renal Physiol 2007;292:F1396-403. doi: 10.1152/ajprenal.00456.200610.1152/ajprenal.00456.200617267387Search in Google Scholar

50. Gambaro G, Valente ML, Zanetti E, Barbera MD, Del Prete D, D’Angelo A, Trevisan A. Mild tubular damage induces calcium oxalate crystalluria in a model of subtle hyperoxaluria: evidence that a second hit is necessary for renal lithogenesis.Search in Google Scholar

J Am Soc Nephrol 2006;17:2213-9. PMID: 16790510Search in Google Scholar

51. Hackett RL, Shevock PN, Khan SR. Madin-Darby canine kidney cells are injured by exposure to oxalate and to calcium oxalate crystals. Urol Res 1994;22:197-203. PMID: 787162910.1007/BF005418927871629Search in Google Scholar

52. Scheid C, Koul H, Hill WA, Luber-Narod J, Kennington L, Honeyman T, Jonassen J, Menon M. Oxalate toxicity in LLC-PK1 cells: role of free radicals. Kidney Int 1996;49:413-9. doi: 10.1038/ki.1996.6010.1038/ki.1996.60Search in Google Scholar

53. Thamilselvan S, Byer KJ, Hackett RL, Khan SR. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK sells. J Urol 2000;164:224-9. PMID: 1084046410.1016/S0022-5347(05)67499-XSearch in Google Scholar

54. Grases F, Garcia-Ferragut L, Costa-Bauza A. Development of calcium oxalate crystals on urothelium: effect of free r a d i c a l s . N e p h r o n 1 9 9 8 ; 7 8 : 2 9 6 - 3 0 1 . d o i : 10.1159/000044939Search in Google Scholar

55. Thamilselvan S, Hackett RL, Khan SR. Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 1997;157:1059-63. PMID: 907254310.1016/S0022-5347(01)65141-3Search in Google Scholar

56. Huang HS, Chen CF, Chien CT, Chen J. Possible biphasic changes of free radicals in ethylene glycol-induced nephrolithiasis in rats. BJU Int 2000;85:1143-9. PMID: 1084871110.1046/j.1464-410x.2000.00674.xSearch in Google Scholar

57. Huang HS, Ma MC, Chen J, Chen CF. Changes in oxidantantioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Urol 2002;167:2584-93. doi: 10.1016/S0022-5347(05)65042-210.1016/S0022-5347(05)65042-2Search in Google Scholar

58. Huang HS, Ma MC, Chen J, Chen CF. Changes in renal hemodynamycs and urodynamics in rats with chronic hyperoxaluria and after acute oxalate infusion: role of free radicals. Neurourol Urodynam 2003;22:176-82. PMID: 1257963610.1002/nau.1005512579636Search in Google Scholar

59. Umekawa T, Chegini N, Khan SR. Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney Int 2002;61:105-12. doi: 10.1046/ j.1523-1755.2002.00106.x10.1046/j.1523-1755.2002.00106.x11786090Search in Google Scholar

60. Umekawa T, Chegini N, Khan SR. Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate, and uric acid crystals. Nephrol Dial Transplant 2003;18:664-9. doi: 10.1093/ndt/gfg14010.1093/ndt/gfg14012637633Search in Google Scholar

61. Umekawa T, Byer K, Uemura H, Khan SR. Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK52E cells. Nephrol Dial Transplant 2005;20:870-8. doi: 10.1093/ndt/gfh75010.1093/ndt/gfh75015755756Search in Google Scholar

62. Lieske JC, Leonard R, Toback FG. Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol Renal Fluid Electrolyte Physiol 1995;268:F604-12. PMID: 876983910.1152/ajprenal.1995.268.4.F6047733317Search in Google Scholar

63. Kumar V, Yu S, Farell G, Toback FG, Lieske JC. Renal epithelial cells constitutively produce a protein that blocks adhesion of crystals to their surface. Am J Physiol Renal P h y s i o l 2 0 0 4 ; 2 8 7 : F 3 7 2 - 8 3 . d o i : 1 0 . 11 5 2 / ajprenal.00418.2003Search in Google Scholar

64. Wesson JA, Worcester EM, Wiessner JH, Mandel NS, Kleinman JG. Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules. Kidney Int 1998;53:952-7. doi: 10.1111/j.1523-1755.1998.00839.x10.1111/j.1523-1755.1998.00839.x9551403Search in Google Scholar

65. Yagisawa T, Chandhoke PS, Fan J, Lucia S. Renal osteopontin expression in experimental urolithiasis. J Endourol 1998;12:171-6. PMID: 960744510.1089/end.1998.12.1719607445Search in Google Scholar

66. Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA.Search in Google Scholar

Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J U r o l 2 0 0 2 ; 1 6 8 : 11 7 3 - 8 1 . d o i : 1 0 . 1 0 9 7 / 0 1 . ju.0000024398.45396.6cSearch in Google Scholar

67. Sokalingum NP, Asplin JR, Coe FL. Evidence that calgranulin is produced by kidney cells and is inhibitor of calcium oxalate crystallization. Am J Physiol Renal Physiol 1998;275:F255-61. PMID: 969101610.1152/ajprenal.1998.275.2.F2559691016Search in Google Scholar

68. Hess B, Jordi S, Zipperle LJ, Ettinger E, Giovanoli R. Citrate determines calcium oxalate crystallization kinetics and crystal morphology - studies in the presence of Tamm- Horsfall protein of a healthy subject and severely recurrent calcium stone former. Nephrol Dial Transplant 2000;15:366-74. doi: 10.1093/ndt/15.3.36610.1093/ndt/15.3.36610692522Search in Google Scholar

69. Grover PK, Thurgood LA, Fleming DE, van Bronswijk W, Wang T, Ryall RL. Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells. Am J Physiol Renal Physiol 2008;294: F355-61. doi: 10.1152/ajprenal.00529.200710.1152/ajprenal.00529.200718077596Search in Google Scholar

70. Atmani F, Khan SR. Characterization of uronic acid-rich inhibitor of calcium crystallization isolated from rat urine.Search in Google Scholar

Urol Res 1995;3:95-101. doi: 10.1007/BF0030793910.1007/BF003079397676539Search in Google Scholar

71. Iida S, Peck AB, Johnosn-Tardieu J, Moriyama M, Glenton PA, Byer KJ, Khan Sr. Temporal changes in mRNA expression for Bikunin in the kidneys of rats during calcium oxalate nephrolithiasis. J Am Soc Nephrol 1999;10:986-96.10.1681/ASN.V10598610232684Search in Google Scholar

PMID: 10232684Search in Google Scholar

72. Selvam R, Adhirai M. Vitamin E pretreatment prevents cyclosporine A-induced crystal deposition in hyperoxaluric rats. Nephron 1997;75:77-81. doi: 10.1159/00018950310.1159/0001895039031274Search in Google Scholar

73. Reckelhoff JF, Kanji V, Racusen LC, Schmidt AM, Yan SD, Morrow J, Roberts LJ, Salahudeen AK. Vitamin E ameliorates enhanced renal lipid peroxidation and accumulation of F2- isoprostanes in aging kidneys. Am J Physiol Regul Integr Comp Physiol 1998;274:R767-74. PMID: 953024410.1152/ajpregu.1998.274.3.R7679530244Search in Google Scholar

74. Huang HS, Chen J, Chen CF, Ma MC. Vitamin E attenuates crystal formation in rat kidneys: role of renal tubular cell death and crystallization inhibitors. Kidney Int 2006;70:699-710. doi: 10.1038/sj.ki.500165110.1038/sj.ki.500165116807540Search in Google Scholar

75. Huang HS, Ma MC, Chen J. Low vitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney. Am J Physiol Renal Physiol 2009;296:F34-45. doi: 10.1152/ajprenal.90309.200810.1152/ajprenal.90309.2008Search in Google Scholar

76. Gershoff SN, Faragalla FF. Endogenous oxalate synthesis and glycine, serine, deoxypyridoxine interrelationships in vitamin B6-deficient rats. J Biol Chem 1959;234:2391-3.10.1016/S0021-9258(18)69822-9Search in Google Scholar

PMID: 13827605Search in Google Scholar

77. Gershof SN, Prien EP, Faragalla FF, Shen GSH, Kearny MM.Search in Google Scholar

Excretion of urinary metabolites in calcium oxalate urolithiasis. Effect of tryptophan and vitamin B6 administration. Am J Clin Nutr 1960;8:812-6. PMID: 1370475010.1093/ajcn/6.2.812Search in Google Scholar

78. Runyan TJ, Gershoff SN. The effect of vitamin B6 defi ciency in rats on the metabolism of oxalic acid precursors. J Biol Chem 1965;240:1889-92. PMID: 1429960610.1016/S0021-9258(18)97400-4Search in Google Scholar

79. Ravichandran V, Selvam R. Increased lipid peroxidation in kidney of vitamin B-6 defi cient rats. Biochem Int 1990;21:599-605. PMID: 2241985Search in Google Scholar

80. Curhan GC, Willet WC, Speizer FE, Stamper MJ. Inatke of vitamin B6 and C and the risk of kidney stones in women. J Am Soc Nephrol 1999;10:840-5. PMID: 1020336910.1681/ASN.V104840Search in Google Scholar

81. Ribaya JD, Gershoff SN. Effects of hydroxyproline and vitamin B-6 on oxalate synthesis in rats. J Nutr 1981;111:1231-9. PMID: 678891210.1093/jn/111.7.1231Search in Google Scholar

82. Sakly R, Achour A, Zouaghi H. Etude sur l’action antilithogene et litholytique de la vitamine A vis-a-vis de la lithiase experimentale chez le rat [Antilithogenic and litholytic action of vitamin A vis-a-vis experimental calculi in rats, in French]. Ann Urol (Paris) 1994;28:128-31.Search in Google Scholar

83. Urivetzky M, Kessaris D, Smith AD. Ascorbic acid overdosing: a risk factor for calcium oxalate. J Urol 1992;147:1215-8. PMID: 156965210.1016/S0022-5347(17)37521-3Search in Google Scholar

84. Massey LK, Liebman M, Kynast-Gales SA. Ascorbate increases human oxaluria and kidney stone risk. J Nutr 2005;135:1673-7. PMID: 1598784810.1093/jn/135.7.167315987848Search in Google Scholar

85. Ribaya-Mercado JD, Gershoff SN. Effects of sugars and vitamin B-6 defi ciency on oxalate synthesis in rats. J Nutr 1984;114:1447-53. PMID: 674772710.1093/jn/114.8.14476747727Search in Google Scholar

86. Welshman SG, McGeown MG. Urinary citrate excretion in stone-formers and normal controls. Br J Urol 1976;48:7-11. doi: 10.1111/j.1464-410X.1976.tb02731.x10.1111/j.1464-410X.1976.tb02731.xSearch in Google Scholar

87. Osther PJ. [Citrate and kidney stones, in Danish]. Ugeskr Laeger 1993;155:3835-9. PMID: 8256384Search in Google Scholar

88. Rudman D, Kutner MH, Redd SC, Waters WC, Gerron GG, Bleier J. Hypocitraturia in calcium nephrolithiasis. J Clin Endocrinol Metab 1982;55:1052-7. PMID: 713033610.1210/jcem-55-6-1052Search in Google Scholar

89. Cowley DM, McWhinney BC, Brown JM, Chaimers AH.Search in Google Scholar

Effect of citrate on the urinary excretion of calcium and oxalate: relevance to calcium oxalate nephrolithiasis. Clin Chem 1989;35:23-8. PMID: 291057610.1093/clinchem/35.1.23Search in Google Scholar

90. Goldberg H, Grass L, Vogl R, Rapaport A, Oreopoulos DG.Search in Google Scholar

Urine citrate and renal stone disease. Can Med Assoc J 1989;141:217-21. PMCID: PMC1269410Search in Google Scholar

91. Tiselius HG, Berg C, Fornander AM, Nilsson MA. Effects of citrate on the different phases of calcium oxalate crystallization. Scanning Microsc 1993;7:381-90. PMID: 8316807Search in Google Scholar

92. Mount DB, Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pfl ugers Arch - Eur J Physiol 2004;447:710-21. doi: 10.1007/s00424-003-1090-310.1007/s00424-003-1090-3Search in Google Scholar

93. Hatch M, Freel RW. Intestinal transport of an obdurate anion: oxalate. Urol Res 2005;33:1-16. PMID: 1556543810.1007/s00240-004-0445-3Search in Google Scholar

94. Sindic A, Chang MH, Mount DB, Romero MF. Renal physiology of SLC26 anion exchangers. Curr Opin Nephrol Hypertens 2007;16:484-90. PMID: 1769376610.1097/MNH.0b013e3282e7d7d0Search in Google Scholar

95. Dorwart MR, Shcheynikov N, Yang D, Muallem S. The solute carrier 26 family of proteins in epithelial ion transport.Search in Google Scholar

P h y s i o l o g y 2 0 0 8 ; 2 3 : 1 0 4 - 1 4 . d o i : 1 0 . 11 5 2 / physiol.00037.2007Search in Google Scholar

96. Quandamatteo F, Krick W, Schubert K, Brzica H, Balen D, Sabolic I, Burckhardt G, Burckhardt BC. Localization of sat-1 (slc26a6) along the gastrointestinal tract. Acta Physiol 2007;189 (Suppl 653):56.Search in Google Scholar

97. Wang Z, Petrovic S, Mann E, Soleimani M. Identifi cation of an apical Cl-/HCO3 - exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol 2002;282:G573-9. doi: 10.1152/ajpgi.00338.200110.1152/ajpgi.00338.2001Search in Google Scholar

98. Xie Q, Welch R, Mercado A, Romero MF, Mount DB.Search in Google Scholar

Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am J Physiol Renal Physiol 2002;283:F826-38. doi: 10.1152/ ajprenal.00079.200210.1152/ajprenal.00079.2002Search in Google Scholar

99. Petrovic S, Wang Z, Ma L, Seidler U, Forte JG, Shull GE, Soleimani M. Colocalization of the apical Cl-/HCO3 - exchanger PAT1 and gastric H-K-ATPase in stomach parietal cells. Am J Physiol Gastrointest Liver Physiol 2002;283: G1207-16. PMID: 1238153510.1152/ajpgi.00137.2002Search in Google Scholar

100. Petrovic S, Ju X, Barone S, Siedler U, Alper SL, Lohi H, Kere J, Soleimani M. Identifi cation of a basolateral Cl-/HCO exchanger specifi c to gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 2003;284:G1093-103. doi: 10.1152/ajpgi.00454.200210.1152/ajpgi.00454.2002Search in Google Scholar

101. Hofmann AF, Laker MF, Dharmsathaphorn K, Sherr HP, Lorenzo D. Complex pathogenesis of hyperoxaluria after jejunoileal bypass surgery. Oxalogenic substances in diet contribute to urinary oxalate. Gastroenterology 1983;84:293-300. PMID: 684840910.1016/S0016-5085(83)80126-7Search in Google Scholar

102. Hatch M, Freel RW, Goldner AM, Earnest DL. Oxalate and chloride absorption by the rabbit colon: sensitivity to metabolic and anion transport inhibitors. Gut 1984;25:232-7. doi: 10.1136/gut.25.3.23210.1136/gut.25.3.23214322736698438Search in Google Scholar

103. Knickelbein RG, Aronson PS, Dobbins JW. Oxalate transport by anion exchange across rabbit ileal brush border. J Clin Invest 1986;77:170-5. doi: 10.1172/JCI11227210.1172/JCI1122724233233003149Search in Google Scholar

104. Hatch M, Freel RW, Vaziri ND. Characteristics of the transport of oxalate and other ions across rabbit proximal colon. Pfl ugers Arch - Eur J Physiol 1993;423:206-12. doi: 10.1007/BF0037439610.1007/BF003743968391680Search in Google Scholar

105. Hatch M, Freel RW, Vaziri ND. Mechanisms of oxalate absorption and secretion across the rabbit distal colon.Search in Google Scholar

Pflugers Arch - Eur J Physiol 1994;426:101-9. PMID: 814601210.1007/BF003746778146012Search in Google Scholar

106. Wang Z, Wang T, Petrovic S, Tuo B, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS, Soleimani M. Renal and intestinal transport defects in Slc26a6-null mice. Am J Physiol Cell Physiol 2005;288:C957-65. doi: 10.1152/ ajpcell.00505.200410.1152/ajpcell.00505.200415574486Search in Google Scholar

107. Freel RW, Hatch M, Green M, Soleimani M. Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol 2006;290:G719-28. doi: 10.1152/ajpgi.00481.200510.1152/ajpgi.00481.200516373425Search in Google Scholar

108. Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 2006;38:474-8. PMID: 1653201010.1038/ng176216532010Search in Google Scholar

109. Soleimani M. The role of SLC26A6-mediated chloride/ oxalate exchange in causing susceptibility to nephrolithiasis.Search in Google Scholar

J P h y s i o l 2 0 0 8 ; 5 8 6 : 1 2 0 5 - 6 . d o i : 1 0 . 1113 / jphysiol.2007.150565Search in Google Scholar

110. Hatch M, Freel RW, Vaziri ND. Intestinal excretion of oxalate in chronic renal failure. J Am Soc Nephrol 1994;5:1339-43.10.1681/ASN.V5613397893999Search in Google Scholar

PMID: 7893999Search in Google Scholar

111. Freel RW, Hatch M, Vaziri ND. Conductive pathways for chloride and oxalate in rabbit ileal brush-border membrane vesicles. Am J Physiol Cell Physiol 1998;275:C748-57.10.1152/ajpcell.1998.275.3.C7489730958Search in Google Scholar

PMID: 9730958Search in Google Scholar

112. Lee A, Beck L, Markovich D. The mouse sulfate anion transporter gene sat1 (Slc26a6): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation by thyroid hormone. DNA Cell Biol 2003;22:19-31. doi: 10.1089/10445490332111246010.1089/10445490332111246012590734Search in Google Scholar

113. Regeer RR, Lee A, Markovich D. Characteriaztion of the human sulfate anion transporter (hsat-1) protein and gene.Search in Google Scholar

DNA Cell Biol 2003;22:107-17. PMID: 1271373610.1089/10445490332151591312713736Search in Google Scholar

114. Hatch M, Freel RW. The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol 2008;28:143-51. doi: 10.1016/j.semnephrol.2008.01.00710.1016/j.semnephrol.2008.01.007243004718359395Search in Google Scholar

115. Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A.Search in Google Scholar

Hyperoxaluria: a gut-kidney axis? Kidney Int 2011;80:1146-58. doi: 10.1038/ki.2011.28710.1038/ki.2011.28721866092Search in Google Scholar

116. Quondamatteo F, Krick W, Hagos Y, Kruger MH, Neubauer- Saile K, Herken R, Ramadori G, Burckhardt G, Burckhardt BC. Localization of sulfate/anion exchanger in the rat liver.Search in Google Scholar

Am J Physiol Gastrointest Liver Physiol 2006;290:G1075-81. doi: 10.1152/ajpgi.00492.200510.1152/ajpgi.00492.200516357056Search in Google Scholar

117. Brzica H, Breljak D, Krick W, Lovric M, Burckhardt G, Burckhardt BC, Sabolic I. The liver and kidney expression of sulfate anion transporter sat-1 in rats exhibits maledominant gender differences. Pfl ugers Arch Eur J Physiol 2009;457:1381-92. doi: 10.1007/s00424-008-0611-510.1007/s00424-008-0611-519002488Search in Google Scholar

118. Karniski LP, Lotscher M, Fucentese M, Hilfi ker H, Biber J, Murer H. Immunolocalization of sat-1 sulfate/oxalate/ bicarbonate anion exchanger in the rat kidney. Am J Physiol Renal Physiol 1998;275:F79-87. PMID: 968900810.1152/ajprenal.1998.275.1.F799689008Search in Google Scholar

119. Brzica H, Balen D, Breljak D, Ljubojevic M, Zlender V, Burckhardt BC, Burckhardt G, Sabolic I. Immunolocalization of Na+-independent sulfate transporter Sat-1 (Slc26a1) in rat kidney and gastrointestinal tract. Period Biol 2007;109(Suppl 2):148.Search in Google Scholar

120. Ko N, Knauf F, Jiang Z, Markovich D, Aronson PS. Sat1 is dispensable for active oxalate secretion in mouse duodenum.Search in Google Scholar

Am J Physiol Cell Physiol 2012;303:C52-7. doi: 10.1152/ ajpcell.00385.2011Search in Google Scholar

121. Silberg DG, Wang W, Moseley H, Traber PG. The down regulated in adenoma (dra) gene encodes intestine-specifi c membrane sulfate transporter protein. J Biol Chem 1995;270:11897-902. doi: 10.1074/jbc.270.20.1189710.1074/jbc.270.20.118977744840Search in Google Scholar

122. Byeon MK, Frankel A, Papas TS, Henderson KW, Schweinfest CW. Human DRA functions as a sulfate transporter in Sf9 insect cells. Protein Expr Purif 1998;12:67-74. PMID: 947345910.1006/prep.1997.08099473459Search in Google Scholar

123. Jacob P, Rosmann H, Lamprecht G, Kretz A, Neff C, Lin-Wu E, Gregor M, Groneberg DA, Kere J, Sedler U. Downregulated in adenoma mediates apical Cl-/HCO3- exchange in rabbit, rat, and human duodenum. Gastroenterology 2002;122:709-24. doi: 10.1053/gast.2002.3187510.1053/gast.2002.3187511875004Search in Google Scholar

124. Schweinfest CW, Spyropoulos DD, Henderson KW, Kim JH, Chapman JM, Barone S, Worell RT, Wang Z, Soleimani M. slc26a3 (dra)-defi cient mice display chloride-losing diarrhea, enhanced colonic proliferation and distinct up-regulation of ion transporters in the colon. J Biol Chem 2006;281:37962-71. doi: 10.1074/jbc.M60752720010.1074/jbc.M60752720017001077Search in Google Scholar

125. Hoglund P, Halia S, Socha J, Tomaszewski I, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmerg C, de la Chapelle A, Kere J. Mutations of the down-regulated in adenoms (DRA) gene cause congenital chloride diarrhoea.Search in Google Scholar

Nat Genet 1996;14:316-9. doi: 10.1038/ng1196-31610.1038/ng1196-3168896562Search in Google Scholar

126. Haila S, Saarialho-Kere U, Karjalainen-Lindsberg ML, Lohi H, Airola K, Holmberg C, Hastbacka J, Kere J, Hoglund P.Search in Google Scholar

The congenital chloride diarrhea gene is expressed in seminal vesicle, sweat gland, infl ammatory colon epithelium, and in some dysplastic colon cells. Histochem Cell Biol 2000;113:279-86. PMID: 1085747910.1007/s00418000013110857479Search in Google Scholar

127. Freel RW, Morozumi M, Hatch M. Parsing apical oxalate exchange in Caco-2BBe1 monolayers: siRNA knockdown of SLC26A6 reveals the roles and properties of PAT-1. Am J Physiol Gastrointest Liver Physiol 2009;297:G918-G929.10.1152/ajpgi.00251.2009277745620501439Search in Google Scholar

128. Heneghan JF, Akhvaein A, Salas M, Shmukler BE, Karniski LP, Vandorpe DH, Alper SL. Regulated transport of sulfate and oxalate by SLC26A2/DTDST. Am J Physiol Cell Physiol 2010;298:C1363-75. doi: 10.1152/ajpcell.00004.201010.1152/ajpcell.00004.2010288964420219950Search in Google Scholar

129. Hugentobler G, Meier PJ. Multispecifi c anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles.Search in Google Scholar

Am J Physiol Gastrointest Liver Physiol 1986;251:G656-64.10.1152/ajpgi.1986.251.5.G6563777171Search in Google Scholar

PMID: 3777171Search in Google Scholar

130. Bissig M, Hagenbuch B, Stieger B, Koller T, Meier PJ.Search in Google Scholar

Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem 1994;269:3022-6. PMID: 8300633Search in Google Scholar

131. Krick W, Schnedler N, Burckhardt G, Burckhardt BC. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions. Am J Physiol Renal Physiol 2009;297:145-54. doi: 10.1152/ajprenal.90401.200810.1152/ajprenal.90401.200819369292Search in Google Scholar

132. Cattell WR, Spencer AG, Taylor GW, Watts RWE. The mechanism of the renal oxalate excretion in the dog. Clin Sci 1962;22:43-52. PMID: 13877395Search in Google Scholar

133. Williams HE, Johnson GA, Smith LH. The renal clearance of oxalate in normal subjects and patients with primary hyperoxaluria. Clin Sci 1971;41:213-8. PMID: 557150110.1042/cs04102135571501Search in Google Scholar

134. McIntosh GH, Belling GB. An isotopic study of oxalate excretion in sheep. Aust J Exp Biol Med Sci 1975;53:479-87.10.1038/icb.1975.531230144Search in Google Scholar

PMID: 1230144Search in Google Scholar

135. Greger R, Lang F, Oberleithner H, Deetjen P. Handling of oxalate by the rat kidney. Pfl ugers Arch 1978;374:243-8. doi: 10.1007/BF0058560110.1007/BF00585601566903Search in Google Scholar

136. Weinman EJ, Frankfurt SJ, Ince A, Sansom S. Renal tubular transport of organic acids. J Clin Invest 1978;61:801-6. doi: 10.1172/JCI10899410.1172/JCI108994372595641156Search in Google Scholar

137. Knight TF, Senekjian HO, Weinman EJ. Effect of paraaminohippurate on renal transport of oxalate. Kidney Int 1979;15:38-42. doi: 10.1038/ki.1979.510.1038/ki.1979.5Search in Google Scholar

138. Knight TF, Sansom SC, Senekjian HO, Weinman EJ. Oxalate secretion in the rat proximal tubule. Am J Physiol Renal Fluid Electrolyte Physiol 1981;240:F295-8. PMID: 722388710.1152/ajprenal.1981.240.4.F295Search in Google Scholar

139. Senekjian HO, Weinman EJ. Oxalate transport by proximal tubule of the rabbit kidney. Am J Physiol Renal Fluid Electrolyte Physiol 1982;243:F271-5. PMID: 711425710.1152/ajprenal.1982.243.3.F271Search in Google Scholar

140. Low I, Friedrich T, Burckhardt G. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am J Physiol Renal Fluid Electrolyte Physiol 1984;246:F334-42.10.1152/ajprenal.1984.246.3.F334Search in Google Scholar

PMID: 6703066Search in Google Scholar

141. Hagenbuch B, Stange G, Murer H. Transport of sulphate in rat jejuna and rat proximal tubular basolateral membrane vesicles. Pflugers Arch 1985;405:202-8. doi: 10.1007/ BF0058256110.1007/BF00582561Search in Google Scholar

142. Kuo SM, Aronson PS. Oxalate transport via the sulfate/HCO3 exchanger in rabbit renal basolateral membrane vesicles. J Biol Chem 1988;263:9710-7. PMID: 338481710.1016/S0021-9258(19)81576-4Search in Google Scholar

143. Markovich D, Bissig M, Sorribas V, Hagenbuch B, Meier PJ, Murer H. Expression of rat renal sulfate transport systems in Xenopus Laevis oocytes. J Biol Chem 1994;269:3022-6.10.1016/S0021-9258(17)42041-2Search in Google Scholar

PMID: 8300634Search in Google Scholar

144. Brandle E, Bernt U, Hautmann RE. In situ characterization of oxalate transport across the basolateral membrane of the proximal tubule. Pfl ugers Arch 1998;435:840-9. 10.1007/ s00424005059210.1007/s0042400505929518514Search in Google Scholar

145. Karniski LP, Aronson PS. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc Natl Acad Sci USA 1985;82:6362-5. PMCID: PMC39105410.1073/pnas.82.18.63623910543862136Search in Google Scholar

146. Karniski LP, Aronson PS. Anion exchange pathways for Cltransport in rabbit renal microvillus membranes. Am J Physiol Renal Fluid Electrolyte Physiol 1987;253:F513-21. PMID: 363128210.1152/ajprenal.1987.253.3.F5133631282Search in Google Scholar

147. Koul H, Ebisuno S, Renzulli L, Yanagawa, Menon M, Scheid C. Polarized distribution of oxalate transport systems in LLC-PK1 cells, a line of renal epithelial cells. Am J Physiol Renal Fluid Electrolyte Physiol 1994;266:F266-74. PMID: 814132710.1152/ajprenal.1994.266.2.F2668141327Search in Google Scholar

148. Kuo SM, Aronson PS. Pathways for oxalate transport in rabbit renal microvillus membrane vesicles. J Biol Chem 1996;271:15491-7. PMID: 866309610.1074/jbc.271.26.154918663096Search in Google Scholar

149. Knauff F, Yang CL, Thomson RB, Mentone SA, Giebisch G, Aronson PS. Identifi cation of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc Natl Acad Sci USA 2001;98:9425-30. doi: 10.1073/pnas.14124109810.1073/pnas.1412410985543711459928Search in Google Scholar

150. Jiang Z, Grichtchenko II, Boron WF, Aronson PS. Specifi ty of anion exchange mediated by mouse Slc26a6. J Biol Chem 2002;277:33963-7. PMID: 1211928710.1074/jbc.M20266020012119287Search in Google Scholar

151. Wang T, Egbert AL, Abbiati T, Aronson PS, Giebisch G.Search in Google Scholar

Mechanisms of stimulation of proximal tubule chloride transport by formate and oxalate. Am J Physiol Renal Fluid Electrolyte Physiol 1996;271:F446-50. PMID: 877017810.1152/ajprenal.1996.271.2.F4468770178Search in Google Scholar

152. Aronson PS. Essential roles of CFEX-mediated Cl--oxalate exchange in proximal tubule NaCl transport and prevention of urolithiasis. Kidney Int 2006;70:1207-13. doi: 10.1038/ sj.ki.500174110.1038/sj.ki.500174116883319Search in Google Scholar

153. Markovich D. Slc13a1 and Slc26a1 KO models reveal physiological roles of anion transporters. Physiology 2012;27:7-14. doi: 10.1152/physiol.00041.201110.1152/physiol.00041.201122311966Search in Google Scholar

154. Laski ME, Kurtzman NA, Sabatini S. Chronic renal failure.Search in Google Scholar

In: Seldin DW, Giebisch G, editors. The Kidney, 3rd ed. Vol II. Philadelphia (PA): Lippincott Williams & Wilkins; 2000. p. 2375-409.Search in Google Scholar

155. Costello J, Smith M, Stolarski C, Sadovnic MJ. Extrarenal clearance of oxalate increases with progression of renal failure in the rat. J Am Soc Nephrol 1992;3:1098-104. PMID: 148275010.1681/ASN.V3510981482750Search in Google Scholar

156. Fernandes I, Laouari D, Tutt P, Hampson G, Friedlander G, Silve C. Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger in chronic renal failure in rats. Kidney Int 2001;59:210-21. doi: 10.1046/j.1523-1755.2001.00481.x10.1046/j.1523-1755.2001.00481.x11135073Search in Google Scholar

157. Khan SR, Glenton PA. Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 2008;294:F1109-15. doi: 10.1152/ajprenal.00620.200710.1152/ajprenal.00620.2007362596518337544Search in Google Scholar

158. Koutsoukos PG, Sheehan ME, Nancollas GH. Epitaxial considerations in urinary stone formation II. The oxalatephosphate system. Invest Urol 1981;18:358-63. PMID: 7203960Search in Google Scholar

159. Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 2003;111:607-16. doi: 10.1172/JCI20031703810.1172/JCI17038Search in Google Scholar

160. He Y, Chen X, Yu Z, Wu D, Lv Y, Shi S, Zhu H. Sodium dicarboxylate cotransporter-1 expression in renal tissues and its role in rat experimental nephrolithiasis. J Nephrol 2004;17:34-42. PMID: 15151257Search in Google Scholar

161. Kohri K, Ishikawa Y, Katoh Y, Kataoka K, Iguchi M, Yachiku S, Kurita T. Epidemiology of urolithiasis in the elderly. Int Urol Nephrol 1991;23:413-21. PMID: 193823910.1007/BF02583983Search in Google Scholar

162. Dall’era J, Kim F, Chandhoke PS. Gender differences among Hispanics and Caucasians in symptomatic presentation of kidney and ureteral stones. J Endourol 2005;159:283-6.10.1089/end.2005.19.283Search in Google Scholar

PMID: 15865513Search in Google Scholar

163. Costa-Bauza A, Ramis M, Montesinos V, Conte A, Piza P, Pieras P, Grases F. Type of renal calculi: variation with age and sex. World J Urol 2007;25:415-21. doi. 10.1007/s00345-007-0177-410.1007/s00345-007-0177-4Search in Google Scholar

164. Lemann J, Pleuss JA, Worcester EM, Hornick L, Schrab D, Hoffman RG. Urinary oxalate excretion increases with body size and decreases with increasing dietary calcium intake among healthy adults. Kidney Int 1996;49:200-8. PMID: 877096810.1038/ki.1996.27Search in Google Scholar

165. Daudon M, Lacour B, Jungers P. Infl uence of body size on urinary stone composition in men and women. Urol Res 2006;34:193-9. PMID: 1647494810.1007/s00240-006-0042-8Search in Google Scholar

166. Lee YH, Huang WC, Huang JK, Chang LS. Testosterone enhances whereas estrogen inhibits calcium oxalate stone formation in ethylene glycol treated rats. J Urol 1996;156:502-5. doi: 10.1097/00005392-199608000-0007110.1097/00005392-199608000-00071Search in Google Scholar

167. Yoshihara H, Yamaguchi S, Yachiku S. Effect of sex hormones on oxalate-synthesizing enzymes in male and female rat livers. J Urol 1999;161:668-73. doi: 10.1097/00005392-199902000-0009710.1097/00005392-199902000-00097Search in Google Scholar

168. Dembic Z, Sabolic I. Alcohol dehydrogense activity in rat kidney cortex stimulated by oestradiol. Biochim Biophys Acta 1982;714:331-6. doi: 10.1016/0304-4165(82)90341-510.1016/0304-4165(82)90341-5Search in Google Scholar

169. Qulali M, Ross RA, Crabb DW. Estradiol induces class I alcohol dehydrogenase activity and mRNA in kidney of female rats. Arch Biochem Biophys1991;288:406-13. PMID: 171687210.1016/0003-9861(91)90213-3Search in Google Scholar

170. Harada S, Tachiyashiki K, Imaizumi K. Effect of sex hormones on rat liver cytosolic alcohol dehydrogenase activity. J Nutr Sci Vitaminol 1998;44:625-39. PMID: 991948310.3177/jnsv.44.625Search in Google Scholar

171. Rachamin G, Israel Y. Sex differences in hepatic alcohol dehydrogenase activity in animal species. Biochem Pharmacol 1985;34:2385-6. PMID: 316035410.1016/0006-2952(85)90798-1Search in Google Scholar

172. Simon FR, Fortune J, Iwahashi M, Sutherland E. Sexual dimorphic expression of ADH in rat liver: importance of the hypothalamic-pituitary-liver axis. Am J Physiol Gastrointest Liver Physiol 2002;283:G646-55. PMID: 1218117910.1152/ajpgi.00438.200112181179Search in Google Scholar

173. Yoshioka I, Tsujihata M, Momohara C, Wongsawat A, Nonomura N, Okuyama A. Effect of sex-hormones on crystal formation in a stone-forming rat model. Urology 2010;75:907-13. doi: 10.1016/j.urology.2009.09.09410.1016/j.urology.2009.09.09420163845Search in Google Scholar

174. Wegner W, Burckhardt BC, Burckhardt G, Henjakovic M.Search in Google Scholar

Male-dominant activation of rat renal organic anion transporter 1 (Oat1) and 3 (Oat3) expression by transcription factor BCL6. PLoS ONE 2012;7:e35556. doi: 10.1371/ journal.pone.003555610.1371/journal.pone.0035556332948422530049Search in Google Scholar

175. Iguchi M, Takamura C, Umekawa T, Kurita T, Kohri K.Search in Google Scholar

Inhibitory effects of female sex hormones on urinary stone formation in rats. Kidney Int 1999;56:479-85. PMID: 1043238610.1046/j.1523-1755.1999.00586.x10432386Search in Google Scholar

176. Sabolic I, Asif AR, Budach WE, Wanke C, Bahn A, Burckhardt G. Gender differences in kidney function.Search in Google Scholar

Pfl ugers Arch - Eur J Physiol 2007;455:397-29. doi: 10.1007/ s00424-007-0308-1Search in Google Scholar

177. Jennings ML, Al-Rhaiyel S. Modifi cation of a carboxyl group that appears to cross the permeability barrier in the red blood cell anion transporter. J Gen Physiol 1988;92:161-78. PMID: 317153710.1085/jgp.92.2.16122288963171537Search in Google Scholar

178. Jennings ML, Adame MF. Characterization of oxalate transport by the human erythrocyte band 3 protein. J Gen Physiol 1996;107:145-59. doi: 10.1085/jgp.107.1.14510.1085/jgp.107.1.14522192448741736Search in Google Scholar

179. Gambaro G, Marchini F, Piccoli A, Nassuato MA, Bilora F, Baggio B. The abnormal red-cell oxalate transport is a risk factor for idiopathic calcium nephrolithiasis: a prospective study. J Am Soc Nephrol 1996;7:608-12. PMID: 872489510.1681/ASN.V746088724895Search in Google Scholar

180. Hatch M, Freel RW, Vaziri ND. Local upregulation of colonic angiotensin II receptors enhances potassium excretion in chronic renal failure. Am J Physiol Renal Physiol 1998;274: F275-82. PMID: 948622210.1152/ajprenal.1998.274.2.F2759486222Search in Google Scholar

181. Hatch M, Freel RW, Shahnifar S, Vaziri ND. Effects of specifi c angiotensin II receptor antagonist losartan on urate homeostasis and intestinal urate transport. J Pharmacol Exp Ther 1996;276:187-93. PMID: 8558429Search in Google Scholar

182. Hatch M, Freel RW, Vaziri ND. AT1 receptor up-regulation in intestine in chronic renal failure is segment specifi c.Search in Google Scholar

Pflugers Arch - Eur J Physiol 1999;437:881-7. PMID: 10370066Search in Google Scholar

183. Hatch M, Freel RW. Angiotensin II involvement in adaptive enteric oxalate excretion in rats with chronic renal failure induced by hyperoxaluria. Urol Res 2003;31:426-32. PMID: 1457452810.1007/s00240-003-0367-514574528Search in Google Scholar

184. Gershoff SN. Production of urinary calculi in vitamin B6 defi cient male, female and castrated male rats. J Nutrition 1969;100:117-22. PMID: 541212510.1093/jn/100.1.1175412125Search in Google Scholar

185. Markovich D, James KM. Heavy metals mercury, cadmium, and chromium inhibit the activity of the mammalian liver and kidney sulfate transporter sat-1. Toxicol Appl Pharmacol 1999;154:181-7. PMID: 992580210.1006/taap.1998.85599925802Search in Google Scholar

186. Chernova MN, Jiang L, Friedman DJ, Darman RB, Lohi H, Kere J, Vandorpe DH, Alper SL. Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants. J Biol Chem 2005;280:8564-80. PMID: 1554852910.1074/jbc.M41170320015548529Search in Google Scholar

187. Clark JS, Vandorpe DH, Chernove MN, Heneghan JF, Stewart AK, Alper SL. Species differences in Cl- affi nity and in electrogenicity of SLC26A6-mediated oxalate/Cl- exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J Physiol 2008;586:1291-306. doi: 10.1113/jphysiol.2007.14322210.1113/jphysiol.2007.143222237567718174209Search in Google Scholar

188. Schnedler N, Burckhardt G, Burckhardt BC. Glyoxylate is a substrate of the sulfate-oxalate exchanger, sat-1, and increases its expression in HepG2 cells. J Hepatol 2011;54:513-20. doi: 10.1016/j.jhep.2010.07.036 10.1016/j.jhep.2010.07.03621093948Search in Google Scholar

ISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other