1. bookVolume 111 (2018): Issue 1 (September 2018)
Journal Details
First Published
30 Jun 2018
Publication timeframe
1 time per year
access type Open Access

Late Glacial and Holocene sedimentary infill of Lake Mondsee (Eastern Alps, Austria) and historical rockfall activity revealed by reflection seismics and sediment core analysis

Published Online: 06 Sep 2018
Volume & Issue: Volume 111 (2018) - Issue 1 (September 2018)
Page range: 111 - 134
Received: 13 Feb 2018
Accepted: 25 Jun 2018
Journal Details
First Published
30 Jun 2018
Publication timeframe
1 time per year

Glacigenic perialpine lakes can constitute continuous post-last glacial maximum (LGM) geological archives which allow reconstruction of both lake-specific sedimentological processes and the paleoenvironmental setting of lakes. Lake Mondsee is one among several perialpine lakes in the Salzkammergut, Upper Austria, and has been previously studied in terms of paleoclimate, paleolimnology and (paleo)ecology. However, the full extent and environment of Late Glacial to Holocene sediment deposition had remained unknown, and it was not clear whether previously studied core sections were fully representative of 3D sediment accumulation patterns. In this study, the sedimentary infill of Lake Mondsee was examined via high-resolution seismic reflection survey over a 57-km extent (3.5 kHz pinger source) and a sediment core extracted from the deepest part of the lake, with a continuous length of 13.76 m. In the northern basin, seismic penetration is strongly limited in most areas because of abundant shallow gas (causing acoustic blanking). In the deeper areas, the acoustic signal reaches depths of up to 80 ms TWT (two-way travel time), representing a postglacial sedimentary sequence of at least 60-m thickness. Holocene deposits constitute only the uppermost 11.5 m of the sedimentary succession. Postglacial seismic stratigraphy of Lake Mondsee closely resembles those of well-studied French and Swiss perialpine lakes, with our data showing that most of Lake Mondsee’s sedimentary basin infill was deposited within a short time period (between 19,000 BP and 14,500 BP) after the Traun Glacier retreated from the Mondsee area, indicating an average sedimentation rate of about 1.4 cm/yr. Compared to other perialpine lakes, the seismic data from Lake Mondsee reveal little indication of mass movement activities during the Holocene. One exception, however, is rockfalls that originate from a steep cliff, the Kienbergwand, situated on the southern shore of Lake Mondsee, where, in the adjacent part of the lake, seismic profiles show mass transport deposits (MTDs), which extend approximately 450 m from the shore and are mappable over an area of about 45,300 m2. Sediment cores targeting the MTDs show two separate rockfall events. The older event consists of clast-supported angular dolomitic gravels and sands, showing high amounts of fine fraction. The younger event exhibits dolomitic clasts of up to 1.5 cm in diameter, which is mixed within a lacustrine muddy matrix. Radiocarbon dating and correlations with varve-dated sediment cores hint at respective ages of AD 1484 ± 7 for Event 1 and AD 1639 ± 5 for Event 2. As our data show no evidence of larger-scale mass movements affecting Lake Mondsee and its surroundings, we infer that the current-day morphology of the Kienbergwand is the result of infrequent medium-scale rockfalls.


Andersen, N., Lauterbach, S., Erlenkeuser, H., Danielopol, D. L., Namiotko, T., Huls, M., Belmecheri, S., Dulski, P. Nantke, C., Meyer, H., Chapligin, B., von Grafenstein, U. and Brauer, A., 2017. Evidence for higher-than-average air temperatures after the 8.2 ka event provided by a Central European δ18O record. Quaternary Science Reviews, 172, 96-108. https://doi.org/10.1016/j.quascirev.2017.08.00110.1016/j.quascirev.2017.08.001Search in Google Scholar

Baster, I., Girardclos, S., Pugin, A. and Wildi, W., 2003. High-resolution seismic stratigraphy of an Holocene lacustrine delta in western Lake Geneva (Switzerland). Eclogae Geologicae Helveticae, 96 (Supplement 1), 11-20. https://doi.org/0012-9402/03/01S011-10.10.1007/978-3-0348-7992-7_3Search in Google Scholar

Behbehani, A.-R., 1987. Sedimentations- und Klimageschichte des Spat- und Postglazials im Bereich der Nordlichen Kalkalpen (Salzkammergutseen, Osterreich). Gottinger Arbeiten zur Geologie und Palaontologie, 34, 1-120.Search in Google Scholar

Behbehani, A. R., Handl, M., Horsthemke, E., Schmidt, R., and Schneider, J., 1985. Possible lake level fluctuations within the Mondsee and Attersee. In D. L. Danielopol, R. Schmidt, & E. Schultze (Eds.), Contributions to the paleolimnology of the Trumer Lakes (Salzburg) and the lakes Mondsee, Attersee and Traunsee (Upper Austria) (pp. 136-148). Limnologisches Institut der Osterreichischen Akademie der Wissenschaften, Mondsee.Search in Google Scholar

Blum, P., 1997. Physical properties handbook, ODP Tech Note 26. doi:10.2973/odp.tn.26.1997Search in Google Scholar

Breitwieser, R., 2010. Der „Mondsee-Tsunami“ - Fakt oder Mediengag? NAU - Nachrichtenblatt Arbeitskreis Unterwasserarchaologie, 16, 85-91.Search in Google Scholar

Burgschwaiger, E. and Schmid, C., 2001. Seismostratigraphische Untersuchungen der Talfullung des oberen Trauntales bei Ebensee. In: C. Hammerl, W. Lenhardt, R. Steinacker, & P. Steinhauser (eds.), 150 Jahre Meteorologie und Geophysik in Osterreich. Wien: Zentralanstalt fur Meteorologie und Geodynamik, pp. 792-797.Search in Google Scholar

Bussmann, F., and Anselmetti, F. S., 2010. Rossberg landslide history and flood chronology as recorded in Lake Lauerz sediments (Central Switzerland). Swiss Journal of Geosciences, 103/1, 43-59. https://doi.org/10.1007/s00015-010-0001-910.1007/s00015-010-0001-9Search in Google Scholar

Charlet, F., De Batist, M., Chapron, E., Bertrand, S., Pino, M. and Urrutia, R., 2008. Seismic stratigraphy of Lago Puyehue (Chilean Lake District): New views on its deglacial and Holocene evolution. Journal of Paleolimnology, 39/2, 163-177. https://doi.org/10.1007/s10933-007-9112-310.1007/s10933-007-9112-3Search in Google Scholar

Cohen, A. S., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford, UK: Oxford University Press.10.1093/oso/9780195133530.001.0001Search in Google Scholar

Cukur, D., Krastel, S., Tomonaga, Y., Cağatay, M. N. and Meydan, A. F., 2013. Seismic evidence of shallow gas from Lake Van, Eastern Turkey. Marine and Petroleum Geology, 48, 341-353. https://doi.org/10.1016/j.marpetgeo.2013.08.01710.1016/j.marpetgeo.2013.08.017Search in Google Scholar

Dapples, A., Oswald, F., Raetzo, D., Dapples, F., Oswald, D., Raetzo, H. and Zwahlen, P., 2003. New records of Holocene landslide activity in the Western and Eastern Swiss Alps: implication of climate and vegetation changes. Eclogae Geologicae Helvetiae, 96/1, 1-9. https://doi.org/10.1007/S00015-003-1078-1Search in Google Scholar

Dorren, L. K. A., 2003. A review of rockfall mechanics and modelling approaches. Progress in Physical Geography, 27/1, 69-87. https://doi.org/10.1191/0309133303pp359ra10.1191/0309133303pp359raSearch in Google Scholar

Egger, H. and van Husen, D., 2009. Geologische Karte der Republik Osterreich - Erlauterungen zu Blatt 64 Strasswalchen. Wien.Search in Google Scholar

Finckh, P., Kelts, K., and Lambert, A., 1984. Seismic stratigraphy and bedrock forms in perialpine lakes. Geological Society of America Bulletin, 95/9, 1118-1128. https://doi.org/https://doi.org/10.1130/0016-7606(1984)95<1118:SSABFI>2.0.CO;210.1130/0016-7606(1984)95<1118:SSABFI>2.0.CO;2Search in Google Scholar

Fiore, J., Girardclos, S., Pugin, A., Gorin, G. and Wildi, W., 2011. Wurmian deglaciation of western Lake Geneva (Switzerland) based on seismic stratigraphy. Quaternary Science Reviews, 30/3-4, 377-393. https://doi.org/10.1016/J.QUASCIREV.2010.11.01810.1016/j.quascirev.2010.11.018Search in Google Scholar

Geoland.at, (n.d.) Digitales Gelandemodell (DGM) Osterreich. Retrieved from https://www.data.gv.at/katalog/dataset/d88a1246-9684-480b-a480-ff63286b35b7Search in Google Scholar

Geologische Bundesanstalt, 2017. Massenbewegungen. Retrieved October 5, 2017, from https://gisgba.geologie.ac.at/gbaviewer/?url=https://gisgba.geologie.ac.at/ArcGIS/rest/services/AT_GBA_MASSENBEWEGUNGEN/MapServerSearch in Google Scholar

Gumpinger, C., 2011. Potentialstudie Salzkammergut. Okologischer Zustand und Verbesserungsmoglichkeiten an den Zuflussen von Mondsee und Irrsee. Linz. Amt der Oo. Landesregierung, Linz, 176 pp.Search in Google Scholar

Gruner, U., 2006. Bergsturze und Klima in den Alpen: gibt es Zusammenhange? Bulletin fur Angewandte Geologie, 11/2, 25-34. https://doi.org/http://doi.org/10.5169/seals-226166Search in Google Scholar

Hammerl, C., 2017. Historical earthquake research in Austria. Geoscience Letters, 4/1, 7. https://doi.org/10.1186/s40562-017-0073-810.1186/s40562-017-0073-8Search in Google Scholar

Heirman, K., De Batist, M., Charlet, F., Moernaut, J., Chapron, E., Brummer, R., Pino, M. and Urrutia, R. (2011). Detailed seismic stratigraphy of Lago Puyehue: Implications for the mode and timing of glacier retreat in the Chilean Lake District. Journal of Quaternary Science, 26/7, 665-674. https://doi.org/10.1002/jqs.149110.1002/jqs.1491Search in Google Scholar

Herrmann, M., 1990. Oberflachenkartierung der Mooswinkelbucht/Mondsee und Untersuchungen zur Tiefenstruktur (Osterr. Kt. 1 : 25000, Bl. 65/3 Mondsee, Salzkammergut, Osterreich). Diplomarbeit, Georg-August- Universitat Gottingen, Gottingen, Germany.Search in Google Scholar

Hilbe, M. and Anselmetti, F. S., 2015. Mass Movement-Induced Tsunami Hazard on Perialpine Lake Lucerne (Switzerland): Scenarios and Numerical Experiments. Pure and Applied Geophysics, 172/2, 545-568. https://doi.org/10.1007/s00024-014-0907-710.1007/s00024-014-0907-7Search in Google Scholar

Hinderer, M., 2001. Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodinamica Acta, 14/4, 231-263. https://doi.org/10.1080/09853111.2001.1143244610.1080/09853111.2001.11432446Search in Google Scholar

Hittenberger, V. R., Mittendorfer, F., Maierhofer, G., Keil, J., Bauer, J., Eder, M. and Czizsek, R., 2006. Tunnel Kienbergwand. Felsbau, 24/1, 18-30.Search in Google Scholar

Huber, A., 1982. Felsbewegungen und Uferabbruche an Schweizer Seen, ihre Ursachen und Auswirkungen. Eclogae Geol. Helv., 75/3, 563-578. https://doi.org/10.5169/seals-165242Search in Google Scholar

Irlweck, K. and Danielopol, D. L., 1985. Caesium-137 and lead-210 dating of recent sediments from Mondsee (Austria). Hydrobiologia, 128/2, 175-185. https://doi.org/10.1007/BF0000873710.1007/BF00008737Search in Google Scholar

Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch, M., Kubik, P. W. and Schluchter, C., 2008. Chronology of the last glacial cycle in the European Alps. Journal of Quaternary Science, 23/6-7, 559-573. https://doi.org/10.1002/jqs.120210.1002/jqs.1202Search in Google Scholar

Jagsch, A. and Megay, K., 1982. Mondsee. In: Seenreinhaltung in Osterreich. Wien: Bundesministerium fur Land und Forstwirtschaft, 6, 155-163.Search in Google Scholar

Janik, C. V., 1969. Die Pfahlbausiedlung See/Mondsee im Blickfeld landschaftlicher Forschung. Jahrbuch des oberosterreichischen Musealvereines, 114, 181-200.Search in Google Scholar

Kampf, L., Brauer, A., Swierczynski, T., Czymzik, M., Mueller, P., and Dulski, P., 2014. Processes of flood-triggered detrital layer deposition in the varved Lake Mondsee sediment record revealed by a dual calibration approach. Journal of Quaternary Science, 29/5, 475-486. https://doi.org/10.1002/jqs.272110.1002/jqs.2721Search in Google Scholar

Kampf, L., Mueller, P., Hollerer, H., Plessen, B., Naumann, R., Thoss, H., Guntner, A., Merz, B., and Brauer, A., 2015. Hydrological and sedimentological processes of flood layer formation in Lake Mondsee. The Depositional Record, 1/1, 18-37. https://doi.org/10.1002/dep2.210.1002/dep2.2Search in Google Scholar

Klee, R. and Schmidt, R., 1987. Eutrophication of Mondsee (Upper Austria) as indicated by the Diatom Stratigraphy of a Sediment Core. Diatom Research, 2/1, 55-76. https://doi.org/10.1080/0269249X.1987.970498510.1080/0269249X.1987.9704985Search in Google Scholar

Kremer, K., Simpson, G. and Girardclos, S., 2012. Giant Lake Geneva tsunami in AD 563. Nature Geoscience, 5/11, 756-757. https://doi.org/10.1038/ngeo161810.1038/ngeo1618Search in Google Scholar

Kremer, K., Wirth, S. B., Reusch, A., Fah, D., Bellwald, B., Anselmetti, F. S., Girardclos, S. and Strasser, M., 2017. Lake-sediment based paleoseismology: Limitations and perspectives from the Swiss Alps. Quaternary Science Reviews, 168, 1-18. https://doi.org/10.1016/j.quascirev.2017.04.02610.1016/j.quascirev.2017.04.026Search in Google Scholar

Lastras, G., Amblas, D., Calafat, A. M., Canals, M., Frigola, J., Hermanns, R. L., Lafuerza, S., Longva, O., Micallef, A., Sepulveda, S. A., Vargas, G., de Batist, M., van Daele, M., Azpiroz, M., Bascunan, I., Duhart, P., Iglesias, O., Kempf, P., and Rayo, X., 2013. Landslides Cause Tsunami Waves: Insights from Aysen Fjord, Chile. Eos, Transactions American Geophysical Union, 94/34, 297-298. https://doi.org/10.1002/2013EO34000210.1002/2013EO340002Search in Google Scholar

Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P., Huls, M., Milecka, K., Namiotko, T., Obremska, M., and Von Grafenstein, U., 2011. Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps). Journal of Quaternary Science, 26/3, 253-267. https://doi.org/10.1002/jqs.144810.1002/jqs.1448Search in Google Scholar

Loffler, H., 1983. Aspects of the history and evolution of Alpine lakes in Austria. Hydrobiologia, 100/1, 143-152. https://doi.org/10.1007/BF0002742710.1007/BF00027427Search in Google Scholar

Longva, O., Janbu, N., Blikra, L. H. and Boe, R., 2003. The 1996 Finneidfjord Slide; Seafloor Failure and Slide Dynamics. In: J. Locat, J. Mienert and L. Boisvert (eds.), Submarine Mass Movements and their Consequences. Springer, Dordrecht, pp. 531-538). https://doi.org/10.1007/978-94-010-0093-2_5810.1007/978-94-010-0093-2_58Search in Google Scholar

Lowe, D. R., 1976. Grain Flow and Grain Flow Deposits. Journal of Sedimentary Research, 46, 188-199. https://doi.org/10.1306/212F6EF1-2B24-11D7-8648000102C1865D10.1306/212F6EF1-2B24-11D7-8648000102C1865DSearch in Google Scholar

Lowe, D. R., 1982. Sediment Gravity Flows: II Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents. Journal of Sedimentary Research, 52 (1), 279-297. https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D10.1306/212F7F31-2B24-11D7-8648000102C1865DSearch in Google Scholar

Moernaut, J., De Batist, M., Heirman, K., Van Daele, M., Pino, M., Brummer, R., & Urrutia, R. (2009). Fluidization of buried mass-wasting deposits in lake sediments and its relevance for paleoseismology: Results from a reflection seismic study of lakes Villarrica and Calafquen (South-Central Chile). Sedimentary Geology, 213/3-4, 121-135. https://doi.org/10.1016/j.sedgeo.2008.12.00210.1016/j.sedgeo.2008.12.002Search in Google Scholar

Moernaut, J., Van Daele, M., Strasser, M., Clare, M. A., Heirman, K., Viel, M., Cardenas, J., Kilian, R., de Guevara, B. L., Pino, M., Urrutia, R. and De Batist, M., 2017. Lacustrine turbidites produced by surficial slope sediment remobilization: A mechanism for continuous and sensitive turbidite paleoseismic records. Marine Geology, 384, 159-176. https://doi.org/10.1016/j.margeo.2015.10.00910.1016/j.margeo.2015.10.009Search in Google Scholar

Mulder, T. and Cochonat, P., 1996. Classification of Offshore Mass Movements. SEPM Journal of Sedimentary Research, Vol. 66/1, 43-57. https://doi.org/10.1306/D42682AC-2B26-11D7-8648000102C1865D10.1306/D42682AC-2B26-11D7-8648000102C1865DSearch in Google Scholar

Munsell Color (Firm), 2009. Munsell soil color charts.Search in Google Scholar

Namiotko, T., Danielopol, D. L., von Grafenstein, U., Lauterbach, S., Brauer, A., Andersen, N., Huls, M., Milecka, K., Baltanas, A., Geiger, W., Belmecheri, S., Desmet, M., Erlenkeuser, H. and Nomade, J., 2015. Palaeoecology of late glacial and holocene profundal Ostracoda of pre-Alpine lake Mondsee (Austria) - A base for further (palaeo-) biological research. Palaeogeography, Palaeoclimatology, Palaeoecology, 419/1, 23-36. https://doi.org/10.1016/j.palaeo.2014.09.00910.1016/j.palaeo.2014.09.009Search in Google Scholar

Ndiaye, M., Clerc, N., Gorin, G., Girardclos, S. and Fiore, J., 2014. Lake Neuchatel (Switzerland) seismic stratigraphic record points to the simultaneous Wurmian deglaciation of the Rhone Glacier and Jura Ice Cap. Quaternary Science Reviews, 85, 1-19. https://doi.org/10.1016/j.quascirev.2013.11.01710.1016/j.quascirev.2013.11.017Search in Google Scholar

OTS, 1999. Netze verhinderten groseres Ungluck auf Kienbergwand-Landesstrase. Retrieved December 15, 2017, from https://www.ots.at/presseaussendung/OTS_19990830_OTS0126/netze-verhindertengroesseres-unglueck-auf-kienbergwand-landesstrasseSearch in Google Scholar

Prager, C., Zangerl, C., Patzelt, G. and Brandner, R., 2008. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazards and Earth System Science, 8/2, 377-407. https://doi.org/10.5194/nhess-8-377-200810.5194/nhess-8-377-2008Search in Google Scholar

Preusser, F., Reitner, J. M. and Schluchter, C., 2010. Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland. Swiss Journal of Geosciences, 103/3, 407-426. https://doi.org/10.1007/s00015-010-0044-y10.1007/s00015-010-0044-ySearch in Google Scholar

Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard- Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Rothlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E. and Ruth, U., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research Atmospheres, 111/6, 1-16. https://doi.org/10.1029/2005JD00607910.1029/2005JD006079Search in Google Scholar

Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. and van der Plicht, J., 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. Radiocarbon, 55/4, 1869-1887. https://doi.org/10.2458/azu_js_rc.55.1694710.2458/azu_js_rc.55.16947Search in Google Scholar

Reitner, J. M., 2011. Das Inngletschersystem wahrend des Wurm-Glazials. In: Arbeitstagung der Geologischen Bundesanstalt 2011 - Achenkirch (pp. 79-88). https://doi.org/10.13140/RG.2.1.3754.1520Search in Google Scholar

Riesner, H., 2014. Klostergeschichte - Grundungssage. Retrieved October 9, 2017, from http://www.mondsee-kultur.at/geschichten.php?nid=41&us=1Search in Google Scholar

Schadler, J., 1958. Der entleerte Gosausee. Geologische Beobachtungen am Seeboden. In: Jahrbuch des Oberosterreichischen Musealvereins. Linz: Oberosterreichischer Musealverein, 103, 191-218.Search in Google Scholar

Schillereff, D. N., Chiverrell, R. C., Macdonald, N., and Hooke, J. M., 2014. Flood stratigraphies in lake sediments: A review. Earth-Science Reviews, 135, 17-37. https://doi.org/10.1016/j.earscirev.2014.03.01110.1016/j.earscirev.2014.03.011Search in Google Scholar

Schmidt, R., 1991. Diatomeenanalytische Auswertung laminierter Sedimente fur die Beurteilung trophischer Langzeittrends am Beispiel des Mondsees (Oberosterreich). Wasser und Abwasser, 35, 109-123.Search in Google Scholar

Schneider, J., Muller, J. and Sturm, M., 1987. Die sedimentologische Entwicklung des Attersees und des Traunsees im Spat- und Postglazial. Mitteilungen der Kommission fur Quartarforschung der Osterreichischen Akademie der Wissenschaften, 7, 51-78.Search in Google Scholar

Schnellmann, M., Anselmetti, F. S., Giardini, D., McKenzie, J. A., and Ward, S. N., 2002. Prehistoric earthquake history revealed by lacustrine slump deposits. Geology, 30/12, 1131-1134. https://doi.org/10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;210.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2Search in Google Scholar

Schnellmann, M., Anselmetti, F. S., Giardini, D. and McKenzie, J. A., 2006. 15,000 Years of mass-movement history in Lake Lucerne: Implications for seismic and tsunami hazards. Eclogae Geologicae Helvetiae, 99/3, 409-428. https://doi.org/10.1007/s00015-006-1196-710.1007/s00015-006-1196-7Search in Google Scholar

Schnurrenberger, D., Russell, J. and Kelts, K., 2003. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology, 29/2, 141-154. https://doi.org/10.1023/A:102327032480010.1023/A:1023270324800Search in Google Scholar

Schultze, E. and Niederreiter, R., 1990. Palaolimnologische Untersuchungen an einem Bohrkern aus dem Profundal des Mondsees (Oberosterreich). Linzer Biologische Beitrage, 22/1, 213-235.Search in Google Scholar

Schulz, M., 2008. Pompeji der Steinzeit. Der Spiegel, 41, 160-162.Search in Google Scholar

Simonneau, A., Chapron, E., Vanniere, B., Wirth, S. B., Gilli, A., Di Giovanni, C., Anselmetti, F. S., Desmet, M. and Magny, M., 2013. Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards. Climate of the Past, 9/2, 825-840. https://doi.org/10.5194/cp-9-825-201310.5194/cp-9-825-2013Search in Google Scholar

Sletten, K., Blikra, L. H., Ballantyne, C. K., Nesje, A. and Dahl, S. O., 2003. Holocene debris flows recognized in a lacustrine sedimentary succession: sedimentology, chronostratigraphy and cause of triggering. The Holocene, 13/6, 907-920. https://doi.org/10.1191/0959683603hl673rp10.1191/0959683603hl673rpSearch in Google Scholar

Strasser, M., Monecke, K., Schnellmann, M. and Anselmetti, F. S., 2013. Lake sediments as natural seismographs: A compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation. Sedimentology, 60/1, 319-341. https://doi.org/10.1111/sed.1200310.1111/sed.12003Search in Google Scholar

Sturm, M. and Matter, A., 1978. Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents. In: Modern and Ancient Lake Sediments (pp. 147-168). Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1002/9781444303698.ch810.1002/9781444303698.ch8Search in Google Scholar

Swierczynski, T., 2012. A 7000 yr runoff chronology from varved sediments of Lake Mondsee (Upper Austria). Dissertation, Universitat Potsdam, Potsdam, Germany.Search in Google Scholar

Swierczynski, T., Lauterbach, S., Dulski, P., & Brauer, A., 2009. Die Sedimentablagerungen des Mondsees (Oberosterreich) als ein Archiv extremer Abflussereignisse der letzten 100 Jahre. Klimawandel in Osterreich - Die Letzten 20.000 Jahre...und ein Blick voraus, 6, 115-126.Search in Google Scholar

Swierczynski, T., Lauterbach, S., Dulski, P., & Brauer, A., 2012. Late Neolithic Mondsee Culture in Austria: living on lakes and living with flood risk? Climate of the Past Discussions, 8/6, 5893-5924. https://doi.org/10.5194/cpd-8-5893-201210.5194/cpd-8-5893-2012Search in Google Scholar

Swierczynski, T., Lauterbach, S., Dulski, P., Delgado, J., Merz, B., & Brauer, A., 2013. Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quaternary Science Reviews, 80, 78-90. https://doi.org/10.1016/j.quascirev.2013.08.01810.1016/j.quascirev.2013.08.018Search in Google Scholar

Tourismusverband MondSeeLand, 2017. Tauchen im Mondsee. Retrieved October 9, 2017, from http://mondsee.salzkammergut.at/detail/article/1248-tauchen-immondsee.htmlSearch in Google Scholar

Trachsel, M., Kamenik, C., Grosjean, M., McCarroll, D., Moberg, A., Brazdil, R., Buntgen, U., Dobrovolny, P., Esper, J., Frank, D. C., Friedrich, M., Glaser, R., Larocque-Tobler, I., Nicolussi, K. and Riemann, D., 2012. Multi-archive summer temperature reconstruction for the European Alps, AD 1053-1996. Quaternary Science Reviews, 46, 66-79. https://doi.org/10.1016/j.quascirev.2012.04.02110.1016/j.quascirev.2012.04.021Search in Google Scholar

van Husen, D., 1989. Geologische Karte der Republik Osterreich 1:50000 - Kartenblatt 65 Mondsee.Search in Google Scholar

van Husen, D., 2003. Als unsere Seen Gletscher waren - die eiszeitliche Entwicklung im Salzkammergut. In J. T. Weidinger, H. Lobitzer, & I. Spitzbart (Eds.), Beitrage zur Geologie des Salzkammergutes (pp. 215-222). Erkudok Institut Museum Gmunden.Search in Google Scholar

van Husen, D., 2004. Quaternary glaciations in Austria. In J. Ehlers & P. L. Gibbard (Eds.), Quaternary Glaciations Extent and Chronology (Vol. 2, pp. 1-13). Elsevier. https://doi.org/10.1016/S1571-0866(04)80051-410.1016/S1571-0866(04)80051-4Search in Google Scholar

van Husen, D. and Egger, H., 2014. Geologische Karte der Republik Osterreich - Erlauterungen zu Blatt 65 Mondsee. Wien.Search in Google Scholar

van Rensbergen, P., De Batist, M., Beck, C. and Manalt, F., 1998. High-resolution seismic stratigraphy of late quaternary fill of Lake Annecy (northwestern Alps): evolution from glacial to interglacial sedimentary processes. Sedimentary Geology, 117/1-2, 71-96. https://doi.org/10.1016/S0037-0738(97)00123-110.1016/S0037-0738(97)00123-1Search in Google Scholar

Vernet, J.-P., Horn, R. and Badoux, H., 1974. Etude structurale du Leman par sismique reflexion continue. Eclogae Geologicae Helvetiae, 67/3, 515-529.Search in Google Scholar

Wanner, H., Beer, J., Butikofer, J., Crowley, T. J., Cubasch, U., Fluckiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Kuttel, M., Muller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., andSearch in Google Scholar

Widmann, M., 2008. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews, 27/19-20, 1791-1828. https://doi.org/10.1016/j.quascirev.2008.06.01310.1016/j.quascirev.2008.06.013Search in Google Scholar

Wieczorek, G. F. and Jager, S., 1996. Triggering mechanisms and depositional rates of postglacial slope-movement processes in the Yosemite Valley, California. Geomorphology, 15/1, 17-31. https://doi.org/10.1016/0169-555X(95)00112-I10.1016/0169-555X(95)00112-ISearch in Google Scholar

Wiemer, G., Moernaut, J., Stark, N., Kempf, P., De Batist, M., Pino, M., Urrutia, R., de Guevara, B. L., Strasser, M. and Kopf, A. (2015). The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile. International Journal of Earth Sciences, 104/5, 1439-1457. https://doi.org/10.1007/s00531-015-1144-810.1007/s00531-015-1144-8Search in Google Scholar

Wood, D. M., 1985. Some fall-cone tests. Geotechnique, 35/1, 64-68. https://doi.org/10.1680/geot.1985. in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo