1. bookVolume 24 (2016): Issue 2 (June 2016)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Open Access

Abnormal lipid metabolism in metabolic syndrome: an epigenetic perspective

Published Online: 28 Jun 2016
Volume & Issue: Volume 24 (2016) - Issue 2 (June 2016)
Page range: 153 - 160
Received: 19 Feb 2016
Accepted: 12 Jun 2016
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English

1. Kraja AT, Vaidya D, Pankow JS, Goodarzi MO, Assimes TL, Kullo IJ, et al. A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes. 2011;60:1329-39. DOI: 10.2337/db10-1011.10.2337/db10-1011306410721386085Search in Google Scholar

2. Bruce KD, Hanson MA. The developmental origins, mechanisms, and implications of metabolic syndrome. J Nutr. 2010;140(3):648-52. DOI: 10.3945/ jn.109.111179.10.3945/jn.109.11117920107145Search in Google Scholar

3. Laker RC, Wlodek ME, Connelly JJ, Yan Z. Epigenetic origins of metabolic disease: The impact of the maternal condition to the offspring epigenome and later health consequences. Food Science and Human Wellness. 2013;2(1):1-11. DOI: 10.1016/j.fshw.2013.03.002.10.1016/j.fshw.2013.03.002Search in Google Scholar

4. Ginsberg HN, Stalenhoef AFH. The metabolic syndrome: targeting dyslipidaemia to reduce coronary risk. J Cardiovasc Risk. 2003; 10(2):121-8. DOI: 10.1177/174182670301000207 DOI: 10.1097/00043798-200304000-00007.10.1177/174182670301000207Search in Google Scholar

5. Brudaşcă I, Cucuianu M. Pathogenic role of abnormal fatty acids and adipokines in the portal flow. Relevance for the metabolic syndrome, hepatic steatosis and steatohepatitis. Rom J Int Med. 2007;45:149-57.Search in Google Scholar

6. Frazier-Wood AC, Aslibekyan S, Absher DM, Hopkins PH, Sha J, Tsai MY, et al. Methylation at CPT1A locus is associated with lipoprotein subfraction profiles. J Lipid Res. 2014;55(7):1324-30. DOI: 10.1194/jlr.M048504.10.1194/jlr.M048504407609324711635Search in Google Scholar

7. Mendelson M, Liang L, Chen J, Baccarelli A, Hirschhorn JN, S.K. Osganian SK, de Ferranti SD. Epigenetic modifications associated with dyslipidemia among obese children and adolescents. CJC. 2014;30(10):S190-1.10.1016/j.cjca.2014.07.306Search in Google Scholar

8. Mamtani M, Kulkarni H, Dyer T, Göring HH, Neary JL, Cole SA, et al. Genome- and epigenome-wide association study of hypertriglyceridemic waist in Mexican American families. Clin Epigenetics. 2016 Jan 20;8:6. DOI: 10.1186/s13148-016-0173-x.10.1186/s13148-016-0173-x472106126798409Search in Google Scholar

9. Lopez-Legarrea P, Mansego ML, Angeles Zulet M. SERPINE1, PAI-1 protein coding gene, methylation levels and epigenetic relationships with adiposity changes in obese subjects with metabolic syndrome features under dietary restriction. J Clin Biochem Nutr. 2013;53(3):139-44. DOI: 10.3164/jcbn.13-54.10.3164/jcbn.13-54381827224249967Search in Google Scholar

10. Luttmer R, Spijkerman AM, Kok RM, Jakobs C, Blom HJ, Serne EH, Dekker JM. Metabolic syndrome components are associated with DNA hypomethylation. Obes Res Clin Pract. 2013 Mar-Apr;7(2):e106-e115. DOI: 10.1016/j.orcp.2012.06.001.10.1016/j.orcp.2012.06.00124331772Search in Google Scholar

11. Alkemade FE, van Vliet P, Henneman P, van Dijk KW, Hierck BP, van Munsteren JC, et al. Prenatal exposure to apoE deficiency and postnatal hypercholesterolemia are associated with altered cell-specific lysine methyltransferase and histone methylation patterns in the vasculature. Am J Pathol. 2010 Feb; 176(2): 542-8. DOI: 10.2353/ajpath.2010.090031.10.2353/ajpath.2010.090031280806220035052Search in Google Scholar

12. Fernandez AZ, Siebel AL, El-Osta A. Atherogenic factors and their epigenetic Relationships. Int J Vasc Med. 2010; 2010:437809. DOI: 10.1155/2010/437809.10.1155/2010/437809Search in Google Scholar

13. Yideng J, Jianzhong Z, Ying H, Juan S, Jinge Z, Shenglan W, et al. Homocysteine-mediated expression of SAHH, DNMTs, MBD2, and DNA hypomethylation potential pathogenic mechanism in VSMCs. DNA and Cell Biology, 2007;26(8):603-11. DOI: 10.1089/ dna.2007.0584.10.1089/dna.2007.0584Search in Google Scholar

14. Krishna SM, Trollope AF, Golledge J. The relevance of epigenetics to occlusive cerebral and peripheral arterial disease. Clin Sci. 2015;128(9)537-58. DOI: 10.1042/ CS20140491.10.1042/CS20140491Search in Google Scholar

15. Laker RC, Wlodek ME, Connelly JJ, Yan Z. Epigenetic origins of metabolic disease: The impact of the maternal condition to the offspring epigenome and later health consequences. Food Science and Human Wellness. 2013;2(1):1-11. DOI: 10.1016/j.fshw.2013.03.002.10.1016/j.fshw.2013.03.002Search in Google Scholar

16. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. Dietary protein restriction of pregnant rats in the F0 generation induces altered 1 methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr. 2007;97:435-9. DOI: 10.1017/S0007114507352392.10.1017/S0007114507352392Search in Google Scholar

17. Hass BS, Hart RW, Lu MH, Lyn-Cook BD. Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat Res. 1993;295:281-9. DOI: 10.1016/0921-8734(93)90026-Y.10.1016/0921-8734(93)90026-YSearch in Google Scholar

18. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60:1528-34. DOI: 10.2337/db10-0979.10.2337/db10-0979311555021471513Search in Google Scholar

19. Fu Q, McKnight R A, Yu X, Wang L, Callaway C W, Lane R H. Uteroplacental insufficiency induces site specific changes in histone H3 covalent modifications and affects DNA-histone H3 positioning in day 0 IUGR rat liver. Physiol Genomics. 2004;20:108-16. DOI: 10.1152/physiolgenomics.00175.2004.10.1152/physiolgenomics.00175.200415494474Search in Google Scholar

20. Bruce KD, Cagampang FR. Epigenetic priming of the metabolic syndrome. Toxicol Mech Method. 2011;21(4):353-61. DOI: 10.3109/15376516.2011.559370.10.3109/15376516.2011.55937021495873Search in Google Scholar

21. Buckley AJ, Keserü, B, Briody J. Thompson M, Ozanne SE, Thompson CH. Altered body composition and metabolism in the male offspring of high fat-fed rats. Metabolism. 2005;54:500-7. DOI: 10.1016/j.metabol.2004.11.003.10.1016/j.metabol.2004.11.00315798958Search in Google Scholar

22. Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 2009; 587(Pt 20):4963-76. DOI: 10.1113/jphysiol.2009.176156.10.1113/jphysiol.2009.176156277015919723777Search in Google Scholar

23. Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, et al. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J Clin Endocrinol Metab. 2009;94:2464-70. DOI: 10.1210/jc.2009-0305.10.1210/jc.2009-030519417040Search in Google Scholar

24. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425-32. DOI: 10.1038/nature05918.10.1038/nature0591817522676Search in Google Scholar

25. Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics. Cell. 2011;146:866-72. DOI: 10.1016/j. cell.2011.08.042.Search in Google Scholar

26. van Abeelen AF, Elias SG, Bossuyt PM, Grobbee DE, van der Schouw YT, Roseboom TJ, et al. Famine exposure in the young and the risk of type 2 diabetes in adulthood. Diabetes. 2012; 61:2255-60. DOI: 10.2337/ db11-1559.10.2337/db11-1559342542422648386Search in Google Scholar

27. Barrès R, Osler ME, Yan J, Runne A, Fritz T, Caidahl K. Non-CpG methylation of the PGC- 1 alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189-98. DOI: 10.1016/j. cmet.2009.07.011.Search in Google Scholar

28. Sookoian S, Rosselli MS, Gemma C, Burgue-o AL, Fernández Gianotti T, Casta-o GO, Pirola CJ. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor γ coactivator 1α promoter. Hepatology. 2010; 52: 1992-2000. DOI: 10.1002/hep.23927.10.1002/hep.2392720890895Search in Google Scholar

29. 29. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes. 2012;61: 3322-32. DOI: 10.2337/db11-1653.10.2337/db11-1653350184423028138Search in Google Scholar

30. Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9(6):e1003572. DOI: 10.1371/journal.pgen.1003572.10.1371/journal.pgen.1003572369484423825961Search in Google Scholar

31. van Otterdijk SD, Mathers JC, Strathdee G. Do age-related changes in DNA methylation play a role in the development of age-related diseases? Biochem Soc Trans. 2013;41:803-7. DOI: 10.1042/BST20120358.10.1042/BST2012035823697941Search in Google Scholar

32. Zhang Y, Cerjak D, Ali O. Finding Epigenetic determinants of the metabolic syndrome. Austin J Endocrinol Diabetes. 2014;1(6):1029.Search in Google Scholar

33. Wan YZ, Gao P, Zhou S, Zhang ZQ, Hao DL, Lian LS et al. SIRT1-mediated epigenetic downregulation of plasminogen activator inhibitor-1 prevents vascular endothelial replicative senescence. Aging Cell. 2014;13(5):890-9. DOI: 10.1111/acel.12247. 10.1111/acel.12247433175925040736Search in Google Scholar

34. Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115:1243-9. DOI: 10.1111/j.1471-0528.2008.01822.x.10.1111/j.1471-0528.2008.01822.x18715409Search in Google Scholar

35. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466-9. DOI: 10.1126/science.1108190.10.1126/science.110819015933200Search in Google Scholar

36. Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes. 2008;32:1373-9. DOI: 10.1038/ijo.2008.100.10.1038/ijo.2008.100257478318626486Search in Google Scholar

37. Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays. 2014; 36:359-71. DOI: 10.1002/bies.201300113.10.1002/bies.201300113404756624431278Search in Google Scholar

38. Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature. 2010 Oct 21;467(7318):963-6. DOI: 10.1038/nature09491.10.1038/nature0949120962845Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo