Cite

1. WHO. Diabetes Fact sheet N°312. 2015 January 2015 [cited; Available from: http://www.who.int/mediacentre/factsheets/fs312/en/Search in Google Scholar

2. ARIAS LF. The Kidney in Diabetes Mellitus and other Metabolic Disorders. [cited 2015 2015 02 26]; Available from: http://www.kidneypathology.com/English_version/Diabetes_and_others.htmlSearch in Google Scholar

3. WHO. Global status report on noncommunicable diseases 2010. World Health Organization. 2011.Search in Google Scholar

4. R. ALPERN, M. CAPLAN, O. MOE. Seldin and Giebisch's The Kidney; Physiology & Pathophysiology. Academic Press; 2012. p. 2605-23.Search in Google Scholar

5. ALNEMRI ES, LIVINGSTON DJ, NICHOLSON DW, SALVESEN G, THORNBERRY NA, WONG WW, et al. Human ICE/CED-3 protease nomenclature. Cell. 1996; 87(2): 171.10.1016/S0092-8674(00)81334-3Search in Google Scholar

6. FIORETTO P, STEFFES MW, BROWN DM, MAUER SM. An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am J Kidney Dis. 1992; 20(6): 549-58.10.1016/S0272-6386(12)70217-2Search in Google Scholar

7. COVIC A., COVIC M., SEGALL L., GUSBETH-TATOMIR P. Manual de Nefrologie. Polirom; 2007.Search in Google Scholar

8. GOLDIN A, BECKMAN JA, SCHMIDT AM, CREAGER MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006; 114(6): 597-605.10.1161/CIRCULATIONAHA.106.62185416894049Search in Google Scholar

9. ZHANG C, LIAO Y, Li Q, CHEN M, ZHAO Q, DENG R, et al. Recombinant adiponectin ameliorates liver ischemia reperfusion injury via activating the AMPK/eNOS pathway. PLoS One. 2013; 8(6): e66382.10.1371/journal.pone.0066382367636023762489Search in Google Scholar

10. FUJII Y, OKADA A, YASUI T, NIIMI K, HAMAMOTO S, HIROSE M, et al. Effect of adiponectin on kidney crystal formation in metabolic syndrome model mice via inhibition of inflammation and apoptosis. PLoS One. 2013; 8(4): e61343.10.1371/journal.pone.0061343363259323630583Search in Google Scholar

11. DING M, CARRAO AC, WAGNER RJ, XIE Y, JIN Y, RZUCIDLO EM, et al. Vascular smooth muscle cell-derived adiponectin: a paracrine regulator of contractile phenotype. J Mol Cell Cardiol. 2012; 52(2): 474-84.10.1016/j.yjmcc.2011.09.008326470021952104Search in Google Scholar

12. QATANANI M, LAZAR MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007; 21(12): 1443-55.10.1101/gad.155090717575046Search in Google Scholar

13. WOLF G, ZIYADEH FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 1999; 56(2): 393-405.10.1046/j.1523-1755.1999.00590.x10432377Search in Google Scholar

14. RIGALLEAU V, GARCIA M, LASSEUR C, LAURENT F, MONTAUDON M, RAFFAITIN C, et al. Large kidneys predict poor renal outcome in subjects with diabetes and chronic kidney disease. BMC Nephrol. 2010; 11: 3.10.1186/1471-2369-11-3283786420199663Search in Google Scholar

15. PENESCU M, MANDACHE E. The value of kidney biopsy in diabetes mellitus. Rom J Morphol Embryol. 2010; 51(1): 13-9.Search in Google Scholar

16. DALLA VESTRA M, SALLER A, MAUER M, FIORETTO P. Role of mesangial expansion in the pathogenesis of diabetic nephropathy. J Nephrol. 2001; 14 Suppl 4: S51-7.Search in Google Scholar

17. SUSZTAK K, RAFF AC, SCHIFFER M, BOTTINGER EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006; 55(1): 225-33.10.2337/diabetes.55.01.06.db05-0894Search in Google Scholar

18. ZHANG Y, SHI Y, LIU Y, DONG H, LIU M, LI Y, et al. Growth pattern switch of renal cells and expression of cell cycle related proteins at the early stage of diabetic nephropathy. Biochem Biophys Res Commun. 2007; 363(1): 159-64.10.1016/j.bbrc.2007.08.139Search in Google Scholar

19. WOLF G. Cell cycle regulation in diabetic nephropathy. Kidney Int Suppl. 2000; 77: S59-66.10.1046/j.1523-1755.2000.07710.xSearch in Google Scholar

20. HARPER JW, ADAMI GR, WEI N, KEYOMARSI K, ELLEDGE SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993; 75(4): 805-16.10.1016/0092-8674(93)90499-GSearch in Google Scholar

21. ALMOND JB, COHEN GM. The proteasome: a novel target for cancer chemotherapy. Leukemia. 2002; 16(4): 433-43.10.1038/sj.leu.240241711960320Search in Google Scholar

22. GERVAIS JL, SETH P, ZHANG H. Cleavage of CDK inhibitor p21(Cip1/Waf1) by caspases is an early event during DNA damage-induced apoptosis. J Biol Chem. 1998; 273(30): 19207-12.10.1074/jbc.273.30.192079668108Search in Google Scholar

23. WOLF G, SCHROEDER R, ZIYADEH FN, THAISS F, ZAHNER G, STAHL RA. High glucose stimulates expression of p27Kip1 in cultured mouse mesangial cells: relationship to hypertrophy. Am J Physiol. 1997; 273(3 Pt 2): F348-56.10.1152/ajprenal.1997.273.3.F3489321907Search in Google Scholar

24. RANE MJ, SONG Y, JIN S, BARATI MT, WU R, KAUSAR H, et al. Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy. Am J Physiol Renal Physiol. 2010; 298(1): F49-61.10.1152/ajprenal.00032.2009280612019726550Search in Google Scholar

25. ELMORE S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495-516.10.1080/01926230701320337211790317562483Search in Google Scholar

26. ALBERTS B JA, LEWIS J, et al., editor. Molecular Biology of the Cell. 4th edition ed. New York: Garland Science; 2002.Search in Google Scholar

27. KUMAR D, ROBERTSON S, BURNS KD. Evidence of apoptosis in human diabetic kidney. Mol Cell Biochem. 2004; 259(1-2): 67-70.10.1023/B:MCBI.0000021346.03260.7eSearch in Google Scholar

28. HOTCHKISS RS, STRASSER A, McDUNN JE, SWANSON PE. Cell death. N Engl J Med. 2009; 361(16): 1570-83.10.1056/NEJMra0901217376041919828534Search in Google Scholar

29. URSEA N, editor. Esentialul in Nefrologie: Fundaţia Română a Rinichiului; 2002.Search in Google Scholar

30. BROSIUS FC, COWARD RJ. Podocytes, signaling pathways, and vascular factors in diabetic kidney disease. Adv Chronic Kidney Dis. 2014; 21(3): 304-10.10.1053/j.ackd.2014.03.011Search in Google Scholar

31. CABON L, MARTINEZ-TORRES AC, SUSIN SA. Programmed cell death comes in many flavors. Med Sci (Paris). 2013; 29 (12): 1117-24.10.1051/medsci/20132912015Search in Google Scholar

32. McLUSKEY K, MOTTRAM JC. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases. Biochem J. 2015; 466(2): 219-32.10.1042/BJ20141324Search in Google Scholar

33. TOWNS R, PIETROPAOLO M, WILEY JW. Stimulation of autophagy by autoantibody-mediated activation of death receptor cascades. Autophagy. 2008; 4(5): 715-6.10.4161/auto.6336Search in Google Scholar

34. ACEHAN D, JIANG X, MORGAN DG, HEUSER JE, WANG X, AKEY CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell. 2002; 9(2): 423-32.10.1016/S1097-2765(02)00442-2Search in Google Scholar

35. DOLEZALOVA D, MRAZ M, BARTA T, PLEVOVA K, VINARSKY V, HOLUBCOVA Z, et al. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells. 2012; 30(7): 1362-72.10.1002/stem.110822511267Search in Google Scholar

36. LEE HB, YU MR, YANG Y, JIANG Z, HA H. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol. 2003; 14(8 Suppl 3): S241-5.10.1097/01.ASN.0000077410.66390.0FSearch in Google Scholar

eISSN:
1220-4749
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, other, Cardiology, Gastroenterology, Rheumatology