1. bookVolume 71 (2017): Issue 5 (October 2017)
Journal Details
License
Format
Journal
eISSN
2255-890X
First Published
14 Sep 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Perception of Biological Motion in Central and Peripheral Visual Fields

Published Online: 14 Nov 2017
Volume & Issue: Volume 71 (2017) - Issue 5 (October 2017)
Page range: 320 - 326
Received: 03 Oct 2016
Accepted: 18 Sep 2017
Journal Details
License
Format
Journal
eISSN
2255-890X
First Published
14 Sep 2008
Publication timeframe
6 times per year
Languages
English
Abstract

Studies analysing biological motion perception based on reduced number of dots have demonstrated that biological motion can be perceived even when only the lower part of the body is visible or when the number of dots representing the object is reduced. What is the minimal amount of information that enables biological motion to be distinguished from its scrambled version? The results of the current experiment demonstrate that biological motion can be distinguished from its scrambled version when the object is formed of approximately 5 (4.7 ± 0.1) dots. Additionally, we also investigated whether the threshold value for biological motion perception differs in central and peripheral visual fields. By using stimulus magnification, we demonstrate that the number of dots sufficient for biological motion perception is similar in the central visual field and near periphery. Hence, stimulus magnification can compensate for reduced task performance in the peripheral visual field. The current results suggest that reduced performance of biological motion perception in the peripheral visual field (as demonstrated in other studies) is due to difficulties with the global perception of biological motion.

Keywords

Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia, 47, 3023-3029.10.1016/j.neuropsychologia.2009.05.01919500604Search in Google Scholar

Barclay, C. D., Cutting, J. E., Kozlowski, L. T. (1978). Temporal and spatial factors in gait perception that influence gender recognition. Percept. Psychophys., 23 (2), 145-152.10.3758/BF03208295643509Open DOISearch in Google Scholar

Barrett, H. C., Todd, O. M., Miller, G. F., Blythe, P. W. (2005). Accurate judgments of intention from motion cues alone: A cross-cultural study. Evol. Hum. Behav., 26 (4), 313-331.10.1016/j.evolhumbehav.2004.08.015Open DOISearch in Google Scholar

Beintema, J. A., Lappe, M. (2002). Perception of biological motion without local image motion. Proc. Natl. Acad. Sci. USA, 99 (8), 5661-5663.10.1073/pnas.08248369912282711960019Search in Google Scholar

Bertenhal, B. I., Pinto, J. (1994). Global processing of biological motion. Psychol. Sci., 5 (4), 221-225.10.1111/j.1467-9280.1994.tb00504.xOpen DOISearch in Google Scholar

Blake, R., Schiffrar, M. (2007). Perception of human motion. Annu. Rev. Psychol., 58, 47-73.10.1146/annurev.psych.57.102904.19015216903802Open DOISearch in Google Scholar

Boyton, G. M., Duncan, R. O. (2002). Visual acuity correlates with cortical magnification factors in human V1 [Abstract]. J. Vis., 2 (10), 11.Search in Google Scholar

Campbell, R. A., Lasky, E. Z. (1968). Adaptive Threshold Procedures: BUDTIF. J. Acoust. Soc. Amer., 44 (2), 537-54110.1121/1.19111175665523Search in Google Scholar

Chung, S. T. L., Mansfield, J. S., Legge, G. E. (1998). Psychophysics of reading. XVIII. The effect of print size on reading speed in normal peripheral vision. Vis. Res., 38 (19), 2949-2962.Search in Google Scholar

Clarke, T. J., Bradshaw, M. F., Field, D. T., Hampson, S. E., Rose, D. (2005). The perception of emotion from body movement in point-light displays of interpersonal dialogue. Perception, 34, 1171-1180.10.1068/p520316309112Open DOISearch in Google Scholar

Cutting, J. E., Kozlowski, L. T. (1977). Recognizing friends by their walk: Gait perception without familiarity cues. Bull. Psychonomic Soc., 9 (5), 353-356.10.3758/BF03337021Search in Google Scholar

Cutting, J. M., Moore, C., Morrison, R. (1988). Masking the motions of human gait. Percept. Psychophys., 44 (4), 339-347.10.3758/BF032104153226881Open DOISearch in Google Scholar

Duncan, R., O., Boynton, G., M. (2003). Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron, 38, 659-667.10.1016/S0896-6273(03)00265-4Open DOISearch in Google Scholar

Finlay, D. (1982). Motion perception in the peripheral visual field. Perception, 11 (4), 457-462.10.1068/p110457Open DOISearch in Google Scholar

Freire, A., Lewis, T. L., Maurer, D., Blake, R. (2006). The development of sensitivity to biological motion in noise. Perception, 35, 647-657.10.1068/p5403Search in Google Scholar

Giese, M. A. (2015). Biological and body motion perception In: Wagemans, J. (Ed.). The Oxford Handbook of Perceptual Organization. Oxford University Press, Oxford, pp. 575-600.Search in Google Scholar

Giese, M. A., Lappe, M. (2002). Measurement of generalization fields for the recognition of biological motion. Vis. Res., 42 (15), 1847-1858.10.1016/S0042-6989(02)00093-7Search in Google Scholar

Gurnsey, R., Roddy, G., Ouhnana, M., Troje, N. F. (2008). Stimulus magnification equates identification and discrimination of biological motion across the visual field. Vis. Res., 48, 2827-2834.10.1016/j.visres.2008.09.016Search in Google Scholar

Gurnsey, R., Roddy, G., Troje, N. F. (2010) Limits of peripheral direction discrimination of point-light walkers. J. Vis., 10 (2), 1-17.10.1167/10.2.15Search in Google Scholar

Higgins, K. E., Arditi, A., Knoblauch, K., (1996). Detection and identification of mirror-image letter pairs in central and peripheral vision. Vis. Res., 36 (2), 331-337.10.1016/0042-6989(95)00117-ISearch in Google Scholar

Hunt, A. R. Halper, F. (2008). Disorganizing biological motion. J. Vis., 8 (12), 1-5.10.1167/8.9.1218831648Search in Google Scholar

Ikeda, H., Blake, R., Watanabe, K. (2005). Eccentric perception of biological motion is unscalably poor. Vis. Res., 45, 1935-1943.10.1016/j.visres.2005.02.00115820512Search in Google Scholar

Johansson, G. (1973), Visual perception of biological motion and a model for its analysis. Percept. Psychophys., 14, 201-211.10.3758/BF03212378Open DOISearch in Google Scholar

Johansson, G., Van Hofsten, C., Jansson, G. (1980). Event perception. Ann. Rev. Psychol., 31, 27-63.10.1146/annurev.ps.31.020180.000331Open DOISearch in Google Scholar

Johnston, A., Wright, M., (1986). Matching velocity in central and peripheral vision. Vis. Res., 26, 1099-1109.10.1016/0042-6989(86)90044-1Search in Google Scholar

Kalloniatis, M., Luu, C. (2005). Visual Acuity. In: Kolb, H., Fernandez, E., Nelson, R. (eds.). Webvision: The Organization of the Retina and Visual System. Salt Lake City (UT): University of Utah Health Sciences Center. May 1 [Updated 2007 Jun 5]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK11509/ (accessed 15 September 2016). Search in Google Scholar

Kozlowski, L.T., Cutting, J. E. (1977). Recognising the sex of a walker from a dynamic point-light display. Percept. Psychophys., 21, 575-58010.3758/BF03198740Open DOISearch in Google Scholar

Lappin, J. S., Tadin, D., Nyquist, J. B., Corn, A. L. (2009). Spatial and temporal limits of motion perception across variations in speed, eccentricity, and low vision. J. Vis., 9 (1):30, 1-14.10.1167/9.1.30Search in Google Scholar

Levitt, H. (1970). Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Amer., 49 (2), 467-477.Search in Google Scholar

Mather, G., Radford, K., West, S. (1992). Low level visual processing of biological motion. Proc. Roy. Soc. London B: Biol. Sci., 249, 149-155.10.1098/rspb.1992.0097Search in Google Scholar

Mather, G., Murdoch, L. (1994). Gender discrimination in biological motion displays based on dynamic cues. Proc. Biol. Sci., 258 (1353), 273-279.Search in Google Scholar

McKay, L., Mackie, J., Piggott, J., Simmons, D. R., Pollick, F. E. (2006). Biological motion processing in autistic spectrum conditions: Perceptual and social factors. J. Vis., 6, 1036.Search in Google Scholar

McKee, S. P., Nakayama, K., (1984). The detection of motion in the peripheral visual field. Vis. Res., 24 (1), 25-32.10.1016/0042-6989(84)90140-8Search in Google Scholar

Meissirel, C., Wikler, K. C., Chalupa, L. M., Rakics, P., (1997). Early divergence of magnocellular and parvocellular functional subsystems in the embryonic primate visual system. Proc. Natl. Acad. Sci. USA, 94 (11), 5900-5905.10.1073/pnas.94.11.5900208789159172Open DOISearch in Google Scholar

Nackaerts, E., Wagemans, J., Helsen, W., Swinnen, S. P., Wenderoth, N., Alaerts, K., (2012). Recognizing biological motion and emotions from point-light displays in autism spectrum disorders, PLOS ONE, 7 (9), e44473.10.1371/journal.pone.0044473343531022970227Search in Google Scholar

Neri, P., Concetta Morrone, M., Burr, D. C. (1998). Seeing biological motion. Nature, 395, 894-896.10.1038/276619804421Search in Google Scholar

Palmer, S. E. (1999). Vision Science: Photons to Phenomenology. MIT Press. 258 pp.Search in Google Scholar

Rovamo, J., Virsu, V., Näsänen, R., (1978). Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature, 271, 54-56.10.1038/271054a0625324Search in Google Scholar

Sally, S. L., Gurnsey, R. (2003). Orientation discrimination in foveal and extra- foveal vision: Effects of stimulus bandwidth and contrast. Vis. Res., 43 (12), 1375-1385.10.1016/S0042-6989(03)00119-6Search in Google Scholar

Schouten, B., Davila, A., Verfaillie, K. (2013). Further explorations of the facing bias in biological motion perception: Perspective cues, observer sex, and response times. PloS One, 8 (2), e56978.10.1371/journal.pone.0056978358412723468898Search in Google Scholar

Sperling, G., Landy, M. S., Dosher, B. A., Perkins, M. E. (1989). Kinetic depth effect and identification of shape. J. Exper. Psychol.: Human Percept. Perform., 15 (4), 826-840.10.1037/0096-1523.15.4.8262531214Search in Google Scholar

Tannazzo, T., Kurylo, D. D., Bukhari, F. (2014). Perceptual grouping across eccentricity. Vis. Res., 103, 101-108.10.1016/j.visres.2014.08.01125175117Search in Google Scholar

Thompson, B., Hansen, B. C., Hess, R. F., Troje, N. F. (2007). Peripheral vision: Good for biological motion, bad for signal noise segregation? J. Vis., 7 (10):12, 1-7.10.1167/7.10.1217997681Search in Google Scholar

Tran, T. H., Guyader, N., Guerin, A., Despretz, P., Boucart, M., (2011). Figure ground discrimination in age-related macular degeneration. Investig. Ophthalm. Vis. Sci., 52, 1655-1660.10.1167/iovs.10-600321087956Search in Google Scholar

Troje, N. F., Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “Life Detector”? Curr. Biol., 16, 821-824.10.1016/j.cub.2006.03.02216631591Open DOISearch in Google Scholar

Vanrie, J., Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behav. Res. Meth. Instrum. Comp., 36, 625-629.10.3758/BF0320654215641407Search in Google Scholar

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychol. Bull., 138 (6), 1172-1217.Search in Google Scholar

Wang, L., Yang, X., Shi, J., Jiang, Y. (2014). The feet have it: Local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage, 84, 217-224.10.1016/j.neuroimage.2013.08.04123994124Open DOISearch in Google Scholar

Wallach, H., O’Connell, D. N. (1953). The kinetic depth effect. J. Exper. Psychol., 45 (4), 205-217.10.1037/h005688013052853Search in Google Scholar

Wurbs, J., Mingolla, E., Yazdanbakhsh, A. (2013). Modeling a space-variant cortical representation for apparent motion. J. Vis., 13 (10):2, 1-17.10.1167/13.10.2Search in Google Scholar

Zacks, J. M., Tversky, B., Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. J. Exper. Psychol. Gen., 130 (1), 29-58.10.1037/0096-3445.130.1.29Search in Google Scholar

Zlatkova, M. B., Anderson, R. S., Ennis, F. A. (2001). Binocular summation for grating detection and resolution in foveal and peripheral vision. Vis. Res., 41 (24), 3093-3100.10.1016/S0042-6989(01)00191-2Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo