Open Access

Proteomics in Diagnosis of Prostate Cancer/ Протеомика Во Дијагноза На Простатниот Карцином


Cite

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010; 127(12): 2893-2917.10.1002/ijc.25516Search in Google Scholar

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015; 65(1): 5-29.10.3322/caac.21254Search in Google Scholar

3. Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer. 2008; 8(4): 268-278.10.1038/nrc2351Search in Google Scholar

4. Catalona WJ, Smith DS, Ratliff TL, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. The New England journal of medicine. 1991; 324(17): 1156-1161.10.1056/NEJM199104253241702Search in Google Scholar

5. Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. The New England journal of medicine. 1987; 317(15): 909-916.10.1056/NEJM198710083171501Search in Google Scholar

6. Oberaigner W, Horninger W, Klocker H, Schonitzer D, Stuhlinger W, Bartsch G. Reduction of prostate cancer mortality in Tyrol, Austria, after introduction of prostate-specific antigen testing. Am J Epidemiol. 2006; 164(4): 376-384.10.1093/aje/kwj213Search in Google Scholar

7. Potosky AL, Feuer EJ, Levin DL. Impact of screening on incidence and mortality of prostate cancer in the United States. Epidemiol Rev. 2001; 23(1): 181-186.10.1093/oxfordjournals.epirev.a000787Search in Google Scholar

8. Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012; 61(6): 1079-1092.10.1016/j.eururo.2012.02.054Search in Google Scholar

9. Nadler RB, Humphrey PA, Smith DS, Catalona WJ, Ratliff TL. Effect of inflammation and benign prostatic hyperplasia on elevated serum prostate specific antigen levels. J Urol. 1995; 154(2 Pt 1): 407-413.10.1016/S0022-5347(01)67064-2Search in Google Scholar

10. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate- specific antigen level < or = 4.0 ng per milliliter. The New England journal of medicine. 2004; 350(22): 2239-2246.10.1056/NEJMoa03191815163773Search in Google Scholar

11. Thompson IM, Ankerst DP, Chi C, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA. 2005; 294(1): 66-70.10.1001/jama.294.1.66Search in Google Scholar

12. Draisma G, Etzioni R, Tsodikov A, et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst. 2009; 101(6): 374-383.10.1093/jnci/djp001Search in Google Scholar

13. Mohler J, Bahnson RR, Boston B, et al. NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc Netw. 2010; 8(2): 162-200.10.6004/jnccn.2010.0012Search in Google Scholar

14. Lapointe J, Li C, Higgins JP, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(3): 811-816.10.1073/pnas.0304146101Search in Google Scholar

15. Sakr WA, Tefilli MV, Grignon DJ, et al. Gleason score 7 prostate cancer: a heterogeneous entity? Correlation with pathologic parameters and disease-free survival. Urology. 2000; 56(5): 730-734.10.1016/S0090-4295(00)00791-3Search in Google Scholar

16. Hori S, Blanchet JS, McLoughlin J. From prostatespecific antigen (PSA) to precursor PSA (proPSA) isoforms: a review of the emerging role of proPSAs in the detection and management of early prostate cancer. BJU Int. 2013; 112(6): 717-728.10.1111/j.1464-410X.2012.11329.x22759214Search in Google Scholar

17. Vlaeminck-Guillem V, Ruffion A, Andre J, Devonec M, Paparel P. Urinary prostate cancer 3 test: toward the age of reason? Urology. 2010; 75(2): 447-453.10.1016/j.urology.2009.03.04619586654Search in Google Scholar

18. Sartori DA, Chan DW. Biomarkers in prostate cancer: what's new? Curr Opin Oncol. 2014; 26(3): 259-264.10.1097/CCO.0000000000000065411068124626128Search in Google Scholar

19. Wolters T, van der Kwast TH, Vissers CJ, et al. False-negative prostate needle biopsies: frequency, histopathologic features, and follow-up. Am J Surg Pathol. 2010; 34(1): 35-43.10.1097/PAS.0b013e3181c3ece919935058Search in Google Scholar

20. Goo YA, Goodlett DR. Advances in proteomic prostate cancer biomarker discovery. J Proteomics. 2010; 73(10): 1839-1850.10.1016/j.jprot.2010.04.00220398807Search in Google Scholar

21. Pin E, Fredolini C, Petricoin EF, 3rd. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem. 2013; 46(6): 524-538.10.1016/j.clinbiochem.2012.12.012Search in Google Scholar

22. Fredolini C, Liotta LA, Petricoin EF. Application of proteomic technologies for prostate cancer detection, prognosis, and tailored therapy. Crit Rev Clin Lab Sci. 2010; 47(3): 125-138.10.3109/10408363.2010.503558Search in Google Scholar

23. Garbis SD, Townsend PA. Proteomics of human prostate cancer biospecimens: the global, systemswide perspective for protein markers with potential clinical utility. Expert Rev Proteomics. 2013; 10(4): 337-354.10.1586/14789450.2013.827408Search in Google Scholar

24. Larkin SE, Zeidan B, Taylor MG, et al. Proteomics in prostate cancer biomarker discovery. Expert Rev Proteomics. 2010; 7(1): 93-102.10.1586/epr.09.89Search in Google Scholar

25. Flatley B, Malone P, Cramer R. MALDI mass spectrometry in prostate cancer biomarker discovery. Biochim Biophys Acta. 2014; 1844(5): 940-949.10.1016/j.bbapap.2013.06.015Search in Google Scholar

26. Wright ME, Han DK, Aebersold R. Mass spectrometry- based expression profiling of clinical prostate cancer. Mol Cell Proteomics. 2005; 4(4): 545-554.10.1074/mcp.R500008-MCP200Search in Google Scholar

27. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975; 250(10): 4007-4021.10.1016/S0021-9258(19)41496-8Search in Google Scholar

28. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997; 18(11): 2071-2077.10.1002/elps.1150181133Search in Google Scholar

29. Lilley KS, Friedman DB. All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics. 2004; 1(4): 401-409.10.1586/14789450.1.4.401Search in Google Scholar

30. Tonge R, Shaw J, Middleton B, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics. 2001; 1(3): 377-396.10.1002/1615-9861(200103)1:3<377::AID-PROT377>3.0.CO;2-6Search in Google Scholar

31. Rabilloud T, Lelong C. Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics. 2011; 74(10): 1829-1841.10.1016/j.jprot.2011.05.040Search in Google Scholar

32. Oliveira BM, Coorssen JR, Martins-de-Souza D. 2DE: the phoenix of proteomics. J Proteomics. 2014; 104: 140-150.10.1016/j.jprot.2014.03.035Search in Google Scholar

33. Link AJ, Eng J, Schieltz DM, et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999; 17(7): 676-682.10.1038/10890Search in Google Scholar

34. Patel VJ, Thalassinos K, Slade SE, et al. A comparison of labeling and label-free mass spectrometrybased proteomics approaches. J Proteome Res. 2009; 8(7): 3752-3759.10.1021/pr900080ySearch in Google Scholar

35. Stahl DC, Swiderek KM, Davis MT, Lee TD. Datacontrolled automation of liquid chromatography/tandem mass spectrometry analysis of peptide mixtures. J Am Soc Mass Spectrom. 1996; 7(6): 532-540.10.1016/1044-0305(96)00057-8Search in Google Scholar

36. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006; 5(1): 144-156.10.1074/mcp.M500230-MCP20016219938Search in Google Scholar

37. Liu Y, Chen J, Sethi A, et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics. 2014; 13(7): 1753-1768.10.1074/mcp.M114.038273408311324741114Search in Google Scholar

38. Liu Y, Huttenhain R, Collins B, Aebersold R. Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn. 2013; 13(8): 811-825.10.1586/14737159.2013.845089383381224138574Search in Google Scholar

39. Collins BC, Gillet LC, Rosenberger G, et al. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods. 2013; 10(12): 1246-1253.10.1038/nmeth.270324162925Search in Google Scholar

40. Liu Y, Huttenhain R, Surinova S, et al. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics. 2013; 13(8): 1247-1256.10.1002/pmic.20120041723322582Search in Google Scholar

41. Kim Y, Ignatchenko V, Yao CQ, et al. Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ-confined versus extracapsular prostate cancer. Mol Cell Proteomics. 2012; 11(12): 1870-1884.10.1074/mcp.M112.017889351811322986220Search in Google Scholar

42. Principe S, Kim Y, Fontana S, et al. Identification of prostate-enriched proteins by in-depth proteomic analyses of expressed prostatic secretions in urine. J Proteome Res. 2012; 11(4): 2386-2396.10.1021/pr2011236364207422339264Search in Google Scholar

43. Wolters DA, Washburn MP, Yates JR, 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 2001; 73(23): 5683-5690.10.1021/ac010617e11774908Search in Google Scholar

44. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006; 312(5771): 212-217.10.1126/science.112461916614208Search in Google Scholar

45. Pusch W, Kostrzewa M. Application of MALDITOF mass spectrometry in screening and diagnostic research. Curr Pharm Des. 2005; 11(20): 2577-2591.10.2174/138161205454693216101460Search in Google Scholar

46. Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics. 2004; 20(5): 777-785.10.1093/bioinformatics/btg48414751995Search in Google Scholar

47. Wright GL, Jr. SELDI proteinchip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev Mol Diagn. 2002; 2(6): 549-563.10.1586/14737159.2.6.54912465452Search in Google Scholar

48. McLerran D, Grizzle WE, Feng Z, et al. SELDI-TOF MS whole serum proteomic profiling with IMAC surface does not reliably detect prostate cancer. Clin Chem. 2008; 54(1): 53-60.10.1373/clinchem.2007.091496433251518024530Search in Google Scholar

49. Kaiser T, Wittke S, Just I, et al. Capillary electrophoresis coupled to mass spectrometer for automated and robust polypeptide determination in body fluids for clinical use. Electrophoresis. 2004; 25(13): 2044-2055.10.1002/elps.20030578815237405Search in Google Scholar

50. Kolch W, Neususs C, Pelzing M, Mischak H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev. 2005; 24(6): 959-977.10.1002/mas.2005115747373Search in Google Scholar

51. Bhowmick NA, Moses HL. Tumor-stroma interactions. Curr Opin Genet Dev. 2005; 15(1): 97-101.10.1016/j.gde.2004.12.003Search in Google Scholar

52. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006; 6(5): 392-401.10.1038/nrc1877Search in Google Scholar

53. Paweletz CP, Liotta LA, Petricoin EF, 3rd. New technologies for biomarker analysis of prostate cancer progression: Laser capture microdissection and tissue proteomics. Urology. 2001; 57(4 Suppl 1): 160-163.10.1016/S0090-4295(00)00964-XSearch in Google Scholar

54. Meehan KL, Holland JW, Dawkins HJ. Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate. 2002; 50(1): 54-63.10.1002/pros.1003211757036Search in Google Scholar

55. Lin JF, Xu J, Tian HY, et al. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer. 2007; 121(12): 2596-2605.10.1002/ijc.2301617722004Search in Google Scholar

56. Ummanni R, Junker H, Zimmermann U, et al. Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Cancer Lett. 2008; 266(2): 171-185.10.1016/j.canlet.2008.02.04718384941Search in Google Scholar

57. Ummanni R, Mundt F, Pospisil H, et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PloS one. 2011; 6(2): e16833.10.1371/journal.pone.0016833303793721347291Search in Google Scholar

58. Han ZD, Zhang YQ, He HC, et al. Identification of novel serological tumor markers for human prostate cancer using integrative transcriptome and proteome analysis. Med Oncol. 2012; 29(4): 2877-2888.10.1007/s12032-011-0149-922215415Search in Google Scholar

59. Alaiya AA, Al-Mohanna M, Aslam M, et al. Proteomics- based signature for human benign prostate hyperplasia and prostate adenocarcinoma. Int J Oncol. 2011; 38(4): 1047-1057.10.3892/ijo.2011.93721305254Search in Google Scholar

60. Zheng Y, Xu Y, Ye B, et al. Prostate carcinoma tissue proteomics for biomarker discovery. Cancer. 2003; 98(12): 2576-2582.10.1002/cncr.1184914669276Search in Google Scholar

61. Cheung PK, Woolcock B, Adomat H, et al. Protein profiling of microdissected prostate tissue links growth differentiation factor 15 to prostate carcinogenesis. Cancer Res. 2004; 64(17): 5929-5933.10.1158/0008-5472.CAN-04-121615342369Search in Google Scholar

62 . Liu AY, Zhang H, Sorensen CM, Diamond DL. Analysis of prostate cancer by proteomics using tissue specimens. J Urol. 2005; 173(1): 73-78.10.1097/01.ju.0000146543.33543.a315592032Search in Google Scholar

63. Garbis SD, Tyritzis SI, Roumeliotis T, et al. Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 2008; 7(8): 3146-3158.10.1021/pr800060r18553995Search in Google Scholar

64. Sun C, Song C, Ma Z, et al. Periostin identified as a potential biomarker of prostate cancer by iTRAQproteomics analysis of prostate biopsy. Proteome Sci. 2011; 9: 22.10.1186/1477-5956-9-22310023721504578Search in Google Scholar

65. Lexander H, Palmberg C, Hellman U, et al. Correlation of protein expression, Gleason score and DNA ploidy in prostate cancer. Proteomics. 2006; 6(15): 4370-4380.10.1002/pmic.20060014816888723Search in Google Scholar

66. Skvortsov S, Schafer G, Stasyk T, et al. Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J Proteome Res. 2011; 10(1): 259-268.10.1021/pr100921j20977276Search in Google Scholar

67. Khamis ZI, Iczkowski KA, Sahab ZJ, Sang QX. Protein profiling of isolated leukocytes, myofibroblasts, epithelial, Basal, and endothelial cells from normal, hyperplastic, cancerous, and inflammatory human prostate tissues. J Cancer. 2010; 1: 70-79.10.7150/jca.1.70293806820842227Search in Google Scholar

68. Pang J, Liu WP, Liu XP, et al. Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis. J Proteome Res. 2010; 9(1): 216-226.10.1021/pr900953s19894759Search in Google Scholar

69. Glen A, Gan CS, Hamdy FC, et al. iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. J Proteome Res. 2008; 7(3): 897-907.10.1021/pr070378x18232632Search in Google Scholar

70. Petricoin EF, 3rd, Ornstein DK, Paweletz CP, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst. 2002; 94(20): 1576-1578.10.1093/jnci/94.20.157612381711Search in Google Scholar

71. Ornstein DK, Rayford W, Fusaro VA, et al. Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml. J Urol. 2004; 172(4 Pt 1): 1302-1305.10.1097/01.ju.0000139572.88463.3915371828Search in Google Scholar

72. Qu Y, Adam BL, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem. 2002; 48(10): 1835-1843.10.1093/clinchem/48.10.1835Search in Google Scholar

73. Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002; 62(13): 3609-3614.Search in Google Scholar

74. Malik G, Ward MD, Gupta SK, et al. Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer. Clin Cancer Res. 2005; 11(3): 1073-1085.10.1158/1078-0432.1073.11.3Search in Google Scholar

75. Pan YZ, Xiao XY, Zhao D, et al. Application of surface- enhanced laser desorption/ionization time-offlight- based serum proteomic array technique for the early diagnosis of prostate cancer. Asian J Androl. 2006; 8(1): 45-51.10.1111/j.1745-7262.2006.00103.x16372118Search in Google Scholar

76. Kyselova Z, Mechref Y, Al Bataineh MM, et al. Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res. 2007; 6(5): 1822-1832.10.1021/pr060664t368517017432893Search in Google Scholar

77. Qin S, Ferdinand AS, Richie JP, O'Leary MP, Mok SC, Liu BC. Chromatofocusing fractionation and two-dimensional difference gel electrophoresis for low abundance serum proteins. Proteomics. 2005; 5(12): 3183-3192.10.1002/pmic.20040113716035113Search in Google Scholar

78. Jayapalan JJ, Ng KL, Razack AH, Hashim OH. Identification of potential complementary serum biomarkers to differentiate prostate cancer from benign prostatic hyperplasia using gel- and lectin-based proteomics analyses. Electrophoresis. 2012; 33(12): 1855-1862.10.1002/elps.20110060822740474Search in Google Scholar

79. Bergamini S, Bellei E, Reggiani Bonetti L, et al. Inflammation: an important parameter in the search of prostate cancer biomarkers. Proteome Sci. 2014; 12: 32.10.1186/1477-5956-12-32406177524944525Search in Google Scholar

80. Byrne JC, Downes MR, O'Donoghue N, et al. 2DDIGE as a strategy to identify serum markers for the progression of prostate cancer. J Proteome Res. 2009; 8(2): 942-957.10.1021/pr800570s19093873Search in Google Scholar

81. Fan Y, Murphy TB, Byrne JC, Brennan L, Fitzpatrick JM, Watson RW. Applying random forests to identify biomarker panels in serum 2D-DIGE data for the detection and staging of prostate cancer. J Proteome Res. 2011; 10(3): 1361-1373.10.1021/pr101106921166384Search in Google Scholar

82. Qingyi Z, Lin Y, Junhong W, et al. Unfavorable prognostic value of human PEDF decreased in highgrade prostatic intraepithelial neoplasia: a differential proteomics approach. Cancer Invest. 2009; 27(7): 794-801.10.1080/0735790080217561719637042Search in Google Scholar

83. Le L, Chi K, Tyldesley S, et al. Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions. Clin Chem. 2005; 51(4): 695-707.10.1373/clinchem.2004.04108715695329Search in Google Scholar

84. Al-Ruwaili JA, Larkin SE, Zeidan BA, et al. Discovery of serum protein biomarkers for prostate cancer progression by proteomic analysis. Cancer Genomics Proteomics. 2010; 7(2): 93-103.Search in Google Scholar

85. Rosenzweig CN, Zhang Z, Sun X, et al. Predicting prostate cancer biochemical recurrence using a panel of serum proteomic biomarkers. J Urol. 2009; 181(3): 1407-1414.10.1016/j.juro.2008.10.142413015019157448Search in Google Scholar

86. Lam YW, Mobley JA, Evans JE, Carmody JF, Ho SM. Mass profiling-directed isolation and identification of a stage-specific serologic protein biomarker of advanced prostate cancer. Proteomics. 2005; 5(11): 2927-2938.10.1002/pmic.20040116515952230Search in Google Scholar

87. Rehman I, Evans CA, Glen A, et al. iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PloS one. 2012; 7(2): e30885.10.1371/journal.pone.0030885328025122355332Search in Google Scholar

88. Decramer S, Gonzalez de Peredo A, Breuil B, et al. Urine in clinical proteomics. Mol Cell Proteomics. 2008; 7(10): 1850-1862. 10.1074/mcp.R800001-MCP20018667409Search in Google Scholar

89. Rodriguez-Suarez E, Siwy J, Zurbig P, Mischak H. Urine as a source for clinical proteome analysis: from discovery to clinical application. Biochim Biophys Acta. 2014; 1844(5): 884-898.10.1016/j.bbapap.2013.06.01623831154Search in Google Scholar

90. Theodorescu D, Fliser D, Wittke S, et al. Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis. 2005; 26(14): 2797-2808.10.1002/elps.20040020815981297Search in Google Scholar

91. Theodorescu D, Schiffer E, Bauer HW, et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl. 2008; 2(4): 556-570.10.1002/prca.200780082274412619759844Search in Google Scholar

92. Schiffer E, Bick C, Grizelj B, Pietzker S, Schofer W. Urinary proteome analysis for prostate cancer diagnosis: cost-effective application in routine clinical practice in Germany. Int J Urol. 2012; 19(2): 118-125.10.1111/j.1442-2042.2011.02901.x22103570Search in Google Scholar

93. M'Koma AE, Blum DL, Norris JL, et al. Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine. Biochem Biophys Res Commun. 2007; 353(3): 829-834.10.1016/j.bbrc.2006.12.111256260017194448Search in Google Scholar

94. True LD, Zhang H, Ye M, et al. CD90/THY1 is overexpressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker. Mod Pathol. 2010; 23(10): 1346-1356.10.1038/modpathol.2010.122294863320562849Search in Google Scholar

95. Haj-Ahmad TA, Abdalla MA, Haj-Ahmad Y. Potential Urinary Protein Biomarker Candidates for the Accurate Detection of Prostate Cancer among Benign Prostatic Hyperplasia Patients. J Cancer. 2014; 5(2): 103-114.10.7150/jca.6890390976524494028Search in Google Scholar

96. Kiprijanovska S, Stavridis S, Stankov O, et al. Mapping and Identification of the Urine Proteome of Prostate Cancer Patients by 2D PAGE/MS. Int J Proteomics. 2014; 2014: 594761.10.1155/2014/594761415814625215235Search in Google Scholar

97. Davalieva K, Kiprijanovska S, Komina S, Petrusevska G, Zografska NC, Polenakovic M. Proteomics analysis of urine reveals acute phase response proteins as candidate diagnostic biomarkers for prostate cancer. Proteome Sci. 2015; 13(1): 2.10.1186/s12953-014-0059-9431665025653573Search in Google Scholar

98. Jayapalan JJ, Ng KL, Shuib AS, Razack AH, Hashim OH. Urine of patients with early prostate cancer contains lower levels of light chain fragments of interalpha- trypsin inhibitor and saposin B but increased expression of an inter-alpha-trypsin inhibitor heavy chain 4 fragment. Electrophoresis. 2013; 34(11): 1663-1669.10.1002/elps.20120058323417432Search in Google Scholar

99. Rehman I, Azzouzi AR, Catto JW, et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer: a pilot study. Urology. 2004; 64(6): 1238-1243.10.1016/j.urology.2004.06.06315596215Search in Google Scholar

100. Okamoto A, Yamamoto H, Imai A, et al. Protein profiling of post-prostatic massage urine specimens by surface-enhanced laser desorption/ionization timeof- flight mass spectrometry to discriminate between prostate cancer and benign lesions. Oncol Rep. 2009; 21(1): 73-79.Search in Google Scholar

101. Nakayama K, Inoue T, Sekiya S, et al. The C-terminal fragment of prostate-specific antigen, a 2331 Da peptide, as a new urinary pathognomonic biomarker candidate for diagnosing prostate cancer. PloS one. 2014; 9(9): e107234.10.1371/journal.pone.0107234416939225233230Search in Google Scholar

102. Flatley B, Wilmott KG, Malone P, Cramer R. MALDI MS profiling of post-DRE urine samples highlights the potential of beta-microseminoprotein as a marker for prostatic diseases. Prostate. 2014; 74(1): 103-111.10.1002/pros.2273624115268Search in Google Scholar

103. Bijnsdorp IV, Geldof AA, Lavaei M, Piersma SR, van Moorselaar RJ, Jimenez CR. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles. 2013; 2.10.3402/jev.v2i0.22097387312024371517Search in Google Scholar

104. Hassan MI, Kumar V, Kashav T, Alam N, Singh TP, Yadav S. Proteomic approach for purification of seminal plasma proteins involved in tumor proliferation. J Sep Sci. 2007; 30(12): 1979-1988.10.1002/jssc.20070002817638362Search in Google Scholar

105. Neuhaus J, Schiffer E, von Wilcke P, et al. Seminal plasma as a source of prostate cancer peptide biomarker candidates for detection of indolent and advanced disease. PloS one. 2013; 8(6): e67514.10.1371/journal.pone.0067514369120523826311Search in Google Scholar

106. Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature. 2008; 452(7187): 571-579.10.1038/nature0691618385731Search in Google Scholar

107. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002; 1(11): 845-867. 10.1074/mcp.R200007-MCP200Search in Google Scholar

eISSN:
0350-1914
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, History and Ethics of Medicine, Clinical Medicine, other, Social Sciences, Education