Open Access

Fungi Causing Storage Rot of Apple Fruit in Integrated Pest Management System and their Sensitivity to Fungicides


Cite

1. Bonfield, J.K., Smith, K.F. and Staden, R. (1995). A new DNA sequence assembly program. Nucleic Acids Research 23 (24): 4992–4999. DOI: 10.1093/nar/23.24.4992.10.1093/nar/23.24.49923075048559656Search in Google Scholar

2. Borve, J., Roen, D., Stensvand, A. (2013). Harvest time influences incidence of storage diseases and fruit quality in organically grown ‘Aroma’ apples. European Journal of Horticultural Science 78 (5): 232–238.Search in Google Scholar

3. Crous, P.W., Verkley, G.J.M., Groenewald, J.Z., Samson, R.A. (2009). Fungal biodiversity. Utrecht, The Netherlands: CBS-KNAW Fungal Biodiversity Centre.Search in Google Scholar

4. De Capdeville, G., Wilson, C. L., Beer, S. V., Aist, J. R. (2002). Alternative disease control agents induce resistance to blue mold in harvested ‘Red Delicious’ apple fruit. Phytopathology 92 (8): 900–908. Retrieved date of access May 15, 2015, from http://dx.doi.org/10.1094/PHYTO.2002.92.8.900.Search in Google Scholar

5. DeEll, J.R., Prange, R.K. (1993). Postharvest physiological disorders, diseases and mineral concentrations of organically and conventionally grown Mclntosh and Cortland apples. Canadian Journal of Plant Science 73 (1): 223–330. DOI:10.4141/cjps93-036.10.4141/cjps93-036Search in Google Scholar

6. Dutot, M., Nelson, L.M., Tyson, R.C. (2013). Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biology and Technology 85 (1): 45–56. DOI:10.1016/j.postharvbio.2013.04.003.10.1016/j.postharvbio.2013.04.003Search in Google Scholar

7. Gardes, M., Bruns, T.D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2 (2): 113–118. DOI: 10.1111/j.1365-294X.1993.tb00005.x.10.1111/j.1365-294X.1993.tb00005.x8180733Search in Google Scholar

8. Henriquez, J.L., Sugar, D., Spotts, R.A. (2006). Induction of cankers on pear tree branches by Neofabraea alba and N. perennans, and fungicide effects on conidial production on cankers. Plant Disease 90 (4): 481–486. DOI:10.1094/PD-90-0481.10.1094/PD-90-048130786598Search in Google Scholar

9. Holb, I.J. (2008). Monitoring conidial density of Monilinia fructigena in the air in relation to brown rot development in integrated and organic apple orchards. European Journal of Plant Pathology 120 (4): 397–408. DOI:10.1094/PHYTO-98-1-0079.10.1094/PHYTO-98-1-007918943241Search in Google Scholar

10. Frisvad, J.C., Samson, R.A. (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in Mycology 49 (1): 1–174.Search in Google Scholar

11. Johnson, R.D., Johnson, L., Kohmoto, K., Otani, H., Lane, C.R., Kodama, M. (2000). A polymerase chain reaction-based method to specifically detect Alternaria alternata apple pathotype (A.mali), the causal agent of Alternaria blotch of apple. Phytopathology 90 (9): 973–976. DOI: 10.1094/PHYTO.2000.90.9.973.10.1094/PHYTO.2000.90.9.97318944521Search in Google Scholar

12. Mari, M., Guidarelli, M., Martini, C., Spadoni, A. (2012). First report of Colletotrichum acutatum causing bitter rot on apple in Italy. Plant Disease 96 (1): 144. DOI: 10.1094/PDIS-06-11-0483.10.1094/PDIS-06-11-048330731871Search in Google Scholar

13. Maxin, P., Weber, R.W.S., Pedersen, H.L., Williams, M. (2012a). Control of a wide range of storage rots in naturally infected apples by hot-water dipping and rinsing. Postharvest Biology and Technology 70 (1): 25–31. DOI: 10.1016/j.postharvbio.2012.04.001.10.1016/j.postharvbio.2012.04.001Search in Google Scholar

14. Maxin, P., Weber, R.W.S., Pedersen, H.L., Williams, M. (2012b). Hot-water dipping of apples to control Penicillium expansum, Neonectria galligena and Botrytis cinerea: effects of temperature on spore germination and fruit rots. European Journal of Horticultural Science 77 (1):1–9.Search in Google Scholar

15. Minář, P. (2006). Effect of late summer treatments by strobilurines on storage diseases of apples. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 54 (4): 39–44. Retrieved date of access May 15, 2015, from http://dx.doi.org/10.11118/actaun200654040039.Search in Google Scholar

16. Morales, H., Marin, S., Ramos, A.J., Sanchis, V. (2010). Influence of post-harvest technologies applied during cold storage of apples in Penicillium expansum growth and patulin accumulation: A review. Food Control 21 (7): 953–962. DOI: 10.1016/j.foodcont.2009.12.016.10.1016/j.foodcont.2009.12.016Search in Google Scholar

17. Niem, J., Miyara, I., Ettedgui, Y., Reuveni, M., Flaishman, M., Prusky, D. (2007). Core rot development in red delicious apples is affected by susceptibility of the seed locule to Alternaria alternata colonization. Phytopathology 97 (11): 1415–1421. DOI: 10.1094/PHYTO-97-11-1415.10.1094/PHYTO-97-11-141518943510Search in Google Scholar

18. Reuveni, M., Sheglov, D. (2002). Effects of azoxystrobin, difenoconazole, polyoxin B (polar) and trifloxystrobin on germination and growth of Alternaria alternata and decay in red delicious apple fruit. Crop Protection 21 (10): 951–955. PII: S0261-2194 (02) 00073 – X.Search in Google Scholar

19. Russell, P.E. (2002). Sensitivity baselines in fungicide resistance research and management. FRAC Monograph No. 3. Brussels, Belgium: Crop Life International.Search in Google Scholar

20. Sever, Z., Ivić, D., Kos, T., Miličević, T. (2012). Identification of Fusarium species isolated from stored apple fruit in Croatia. Archives of Industrial Hygiene and Toxicology 63 (4): 463–470. DOI: 10.2478/10004-1254-63-2012-2227.10.2478/10004-1254-63-2012-222723334041Search in Google Scholar

21. Sholberg, P.L., Bedford, K.E., Stokes, S. (2003). Effect of preharvest application of cyprodinil on postharvest decay of apples caused by Botrytis cinerea. Plant Disease 87(9): 1067–1071. Retrieved date of access May 15, 2015, from http://dx.doi.org/10.1094/PDIS.2003.87.9.1067.Search in Google Scholar

22. Sholberg, P.L., Harlton, C., Haaga P., Lévesque, C.A., O’Gormana D., Seifert, K. (2005). Benzimidazole and diphenylamine sensitivity and identity of Penicillium spp. that cause postharvest blue mold of apples using β-tubulin gene sequences. Postharvest Biology and Technology 36 (1): 41–49. DOI: 10.1016/j.postharvbio.2004.07.011.10.1016/j.postharvbio.2004.07.011Search in Google Scholar

23. Sholberg, P.L., Haag, P.D. (1996). Incidence of postharvest pathogens of stored apples in British Columbia. Canadian Journal of Plant Pathology 18 (1): 81–85. DOI: 10.1080/07060669609500661.10.1080/07060669609500661Search in Google Scholar

24. Spadaro, D., Pellegrino, C., Garibaldi, A., Gullino, M.L. (2011). Development of SCAR primers for the detection of Cadophora luteo-olivacea on kiwifruit and pome fruit and of Cadophora malorum on pome fruit. Phytopathologia Mediterranea 50 (3): 430−441. DOI:10.14601/Phytopathol_Mediterr-9457.Search in Google Scholar

25. Surviliene, E., Dambrauskiene, E. (2006). Effect of different active ingredients of fungicides on Alternaria spp. growth in vitro. Agronomy Research 4 (Special issue): 403–406.Search in Google Scholar

26. Sutton, T.B., Aldwinckle, H.S., Agnello, A.M., Walgenbach, J.F. (2014). Compendium of Apple and Pear Diseases and Pests. APS Press.Search in Google Scholar

27. Thomidis, T., Michailides, T.J. (2009). Studies on Diaporthe eres as a new pathogen of peach trees in Greece. Plant Disease 93 (12): 1293–1297. DOI: 10.1094/PDIS-93-12-1293.10.1094/PDIS-93-12-129330759511Search in Google Scholar

28. Xiao, C.L., Boal, R.J. (2009). Preharvest application of a boscalid and pyraclostrobin mixture to control postharvest gray mold and blue mold in apples. Plant Disease 93 (2):185–189. DOI: 10.1094/PDIS-93-2-0185.10.1094/PDIS-93-2-018530764101Search in Google Scholar

29. Xiao, C.L., Rogers, J.D. (2004). A postharvest fruit rot in d’Anjou pears caused by Sphaeropsis pyriputrescens sp. nov. Plant Disease 88 (2):114–118. Retrieved date of access May 15,2015, from http://dx.doi.org/10.1094/PDIS.2004.88.2.114.Search in Google Scholar

30. Volkova, J., & Juhnevica-Radenkova, K. (2015). Ābolu rūgtā puve – dažādi ierosinātāji, divas dažādas slimības (Bitter rot of apple: different causal agents, two diseases). In Scientific and Practical Conference “Harmonius Agriculture”, 19–20 February 2015 (pp. 149–152). Jelgava, Latvia: Latvia University of Agriculture. (in Latvian).Search in Google Scholar

31. Watanabe, T. (2002). Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. (2nd ed.). Boca Raton: CRC Press.10.1201/9781420040821Search in Google Scholar

32. White, T.J., Bruns, T., Lee, S., Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR protocols. A guide to methods and applications (315–322). USA: Academic Press, Inc.Search in Google Scholar

33. Weber, R.W.S. (2011). Phacidiopycnis washingtonensis, cause of a new storage rot of apples in Northern Europe. Journal of Phytopathology 159 (10): 682–686. DOI: 10.1111/j.1439-0434.2011.01826.x10.1111/j.1439-0434.2011.01826.xSearch in Google Scholar

eISSN:
2256-0939
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Biotechnology, Plant Science, Ecology