1. bookVolume 19 (2017): Issue 4 (December 2017)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

The structure and properties of eucalyptus fiber/phenolic foam composites under N-β(aminoethyl)-γ-aminopropyl trimethoxy silane pretreatments

Published Online: 29 Dec 2017
Page range: 116 - 121
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

Eucalyptus fibers were modified with N-β(aminoethyl)-γ-aminopropyl trimethoxy silane to research the fiber surface’s changes and the influence of the treatment on the mechanical properties, flame resistance, thermal conductivity and microstructure of eucalyptus fiber composite phenolic foams (EFCPFs). The results showed that the partial of hemicelluloses, waxes, lignin and impurities from the fiber surface were dissolved and removed. Compared with untreated EFCPFs, the mechanical properties of treated EFCPFs were increased dramatically; The size of cells was smaller and the distribution was more uniform; The thermal conductivities were basically reduced; Especially the ratio of mass loss decreased obviously. However limited oxygen indexs (LOIs) reduced. And the mechanical properties and LOIs of EFCPFs were basically decreased with the increase of eucalyptus fibers. By comprehensive analysis, the results showed that the interfacial compatibility has been significantly improved between eucalyptus fibers and phenolic resin. And the suitable dosage of eucalyptus fibers was about 5%.

Keywords

1. Ma, Y., Wang, J., Xu, Y., Wang, C. & Chu, F. (2015). Effect of zinc oxide on properties of phenolic foams/halogen-free flame retardant system. J. Appl. Polym. Sci. 132(44). DOI: 10.1002/app.42730.10.1002/app.42730Open DOISearch in Google Scholar

2. Lei, S., Guo, Q., Zhang, D., Shi, J., Liu, L. & Wei, X. (2010). Preparation and properties of the phenolic foams with controllable nanometer pore structure. Journal of applied polymer science. 117(6):3545–3550. DOI: 10.1002/app.32280.10.1002/app.32280Open DOISearch in Google Scholar

3. Yang, H., Wang, X., Yuan, H., Song, L., Hu, Y. & Yuen, R.K.. (2012). Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers. Journal of Polymer Research. 19(3):1–10. DOI: 10.1007/s10965-012-9831-7.10.1007/s10965-012-9831-7Open DOISearch in Google Scholar

4. Rangari, V.K., Hassan, T.A., Zhou, Y., Mahfuz, H., Jeelani, S. & Prorok, B.C.. (2007). Cloisite clay-infused phenolic foam nanocomposites. Journal of applied polymer science. 103(1):308–314. DOI: 10.1002/app.25287.10.1002/app.25287Open DOISearch in Google Scholar

5. Shen, H., Lavoie, A.J. & Nutt, S.R. (2003). Enhanced peel resistance of fiber reinforced phenolic foams. Composites Part A: Appl. Sci. Manufact. 34(10), 941–948. DOI: 10.1016/S1359-835X(03)00210-0.Search in Google Scholar

6. Shen, H. & Nutt, S. (2003). Mechanical characterization of short fiber reinforced phenolic foam. Composites Part A: Applied science and manufacturing. 34(9), 899–906. DOI:10.1016/S1359-835X(03)00136-2.10.1016/S1359-835X(03)00136-2Open DOISearch in Google Scholar

7. Bledzki, A. & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2), 221–274. DOI: 10.1016/S0079-6700(98)00018-5.10.1016/S0079-6700(98)00018-5Open DOISearch in Google Scholar

8. Canche-E scamilla, G., Cauich-Cupul, J., Mendizabal, E., Puig, J., Vazquez-Torres, H. & Herrera-Franco, P. (1999). Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Composites Part A: Appl. Sci. Manufact. 30(3), 349–359. DOI: 10.1016/S1359-835X(98)00116-X.Search in Google Scholar

9. Mitra, B., Basak, R. & Sarkar, M. (1998). Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J. Appl. Polym. Sci. 67(6), 1093–1100. DOI: 10.1002/(SICI)1097-4628(19980207)67:6<1093::AID-APP17>3.0.CO;2-1.10.1002/(SICI)1097-4628(19980207)67:6<1093::AID-APP17>3.0.CO;2-1Open DOISearch in Google Scholar

10. Rana, A., Mandal, A., Mitra, B., Jacobson, R., Rowell, R. & Banerjee, A. (1998). Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J. Appl. Polym. Sci. 69(2), 329–338. DOI: 10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-R.Search in Google Scholar

11. Xie, Y., Hill, C.A., Xiao, Z., Militz, H. & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Appl. Sci. Manufact. 41(7), 806–819. DOI: 10.1016/j.compositesa.2010.03.005.10.1016/j.compositesa.2010.03.005Open DOISearch in Google Scholar

12. Yang, Y. & He, J. (2015). Mechanical characterization of phenolic foams modified by short glass fibers and polyurethane prepolymer. Polymer Composites 36(9), 1584–1589. DOI: 10.1002/pc.23066.10.1002/pc.23066Open DOISearch in Google Scholar

13. Maldas, D. & Kokta, B. (1993). Performance of hybrid reinforcements in PVC composites. I: Use of surface-modified mica and wood pulp as reinforcements. J. Test. Evaluat. 21(1), 68–72. DOI: 10.1177/073168449201101002.10.1177/073168449201101002Open DOISearch in Google Scholar

14. Mohanty, A. & Misra, M. & Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10(1–2), 19–26. DOI: 10.1023/A:1021013921916.10.1023/A:1021013921916Open DOISearch in Google Scholar

15. Bledzki, A., Gassan, J. & Theis, S. (1998). Wood-filled thermoplastic composites. Mech. Comp. Mat. 34(6):563–568. DOI: 10.1007/BF02254666.10.1007/BF02254666Open DOISearch in Google Scholar

16. Cantero, G., Arbelaiz, A., Llano-Ponte, R. & Mondragon, I. (2003). Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Comp. Sci. Technol. 63(9), 1247–1254. DOI: 10.1016/S0266-3538(03)00094-0.10.1016/S0266-3538(03)00094-0Open DOISearch in Google Scholar

17. Bachtiar, D., Sapuan, S. & Hamdan, M. (2008). The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials & Design. 29(7), 1285–1290. DOI: 10.1016/j.matdes.2007.09.006.10.1016/j.matdes.2007.09.006Open DOISearch in Google Scholar

18. Bledzki, A., Reihmane, S. & Gassan, J. (1996). Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 59(8), 1329-1336. DOI:10.1002/(SICI)1097-4628(19960222)59:8<1329::AIDAPP17>3.0.CO;2-0.Search in Google Scholar

19. Islam, M. & Pickering, K. (2007). Influence of alkali treatment on the interfacial bond strength of industrial hemp fibre reinforced epoxy composites: Effect of variation from the ideal stoicheometric ratio of epoxy resin to curing agent. Adv. Mater. Res. 29, 319–322. DOI:10.4028/www.scientific.net/AMR.29-30.319.10.4028/www.scientific.net/AMR.29-30.319Open DOISearch in Google Scholar

20. Rider, A. & Arnott, D. (2000). Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. Intern. J. Adhes. Adhesiv. 20(3), 209–220. DOI: 10.1016/S0143-7496(99)00046-9.10.1016/S0143-7496(99)00046-9Open DOISearch in Google Scholar

21. Mittal, K.L. (2007). Silanes and other coupling agents. CRC Press.Search in Google Scholar

22. Colom, X., Carrasco, F., Pages, P. & Canavate, J. (2003). Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Composites Sci. Technol. 63(2), 161–169. DOI: 10.1016/S0266-3538(02)00248-8.10.1016/S0266-3538(02)00248-8Open DOISearch in Google Scholar

23. Pickering, K., Abdalla, A., Ji, C., McDonald, A. & Franich, R. (2003). The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Composites Part A: Appl. Sci. Manufact. 34(10), 915–926. DOI: 10.1016/S1359-835X(03)00234-3.Search in Google Scholar

24. Te-fu, Q., Luo-hua, H. & Gai-yun, L. (2005). Effect of chemical modification on the properties of wood/polypropylene composites. J. For. Res. 16(3), 241–244. DOI: 10.1007/BF02856824.10.1007/BF02856824Open DOISearch in Google Scholar

25. Towo, A.N. & Ansell, M.P. (2008). Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre–thermosetting resin composites. Composites Sci. Technol. 68(3), 925–932. DOI:10.1016/j.compscitech.2007.08.022.10.1016/j.compscitech.2007.08.022Open DOISearch in Google Scholar

26. Silverstein, R.M., Webster, F.X., Kiemle, D.J. & Bryce, D.L. (2014). Spectrometric identification of organic compounds. John Wiley & Sons.Search in Google Scholar

27. Lu, B., Zhang, L. & Zeng, J.E. et al. (2005). Natural Fiber Composites Material Chemical Industry Press.Search in Google Scholar

28. Valadez-Gonzalez, A., Cervantes-Uc, J., Olayo, R. & Herrera-Franco, P. (1999). Chemical modification of henequen fibers with an organosilane coupling agent. Composites Part B: Engineering, 30(3), 321–331. DOI: 10.1016/S1359-8368(98)00055-9.10.1016/S1359-8368(98)00055-9Open DOISearch in Google Scholar

29. Cui, Y., Lee, S., Noruziaan, B., Cheung, M. & Tao, J. (2008). Fabrication and interfacial modification of wood/recycled plastic composite materials. Composites Part A: Appl. Sci. Manufact. 39(4), 655–661. DOI: 10.1016/j.compositesa.2007.10.017.10.1016/j.compositesa.2007.10.017Open DOISearch in Google Scholar

30. Wang, L., Han, G. & Zhang, Y. (2007). Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr. Polym. 69(2), 391–397. DOI: 10.1016/j.carbpol.2006.12.028.10.1016/j.carbpol.2006.12.028Open DOISearch in Google Scholar

31. Cuicui, W. & Dai Zhen, X.G. (2010). Research on Hard-segment Flame-retardant Modification of Waterborne Polyurethane. China Coatings. 8:016. DOI: 10.13531/j.cnki.china.coatings.2010.08.010.10.13531/j.cnki.china.coatings.2010.08.010Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo