1. bookVolume 19 (2017): Issue 3 (September 2017)
Journal Details
License
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Open Access

Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution

Published Online: 10 Oct 2017
Volume & Issue: Volume 19 (2017) - Issue 3 (September 2017)
Page range: 75 - 82
Journal Details
License
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

1. Bougie, F. & Iliuta, M.C. (2011). CO2 Absorption in Aqueous Piperazine Solutions: Experimental Study and Modeling, J. Chem. Eng. 56, 1547–1554. DOI: 10.1021/je1012247.10.1021/je1012247Open DOISearch in Google Scholar

2. Kohl, A.L. & Nielsen, R.B., Gas Purification, 5th ed., Gulf Publishing Co., Houston, U.S.A., 1997.Search in Google Scholar

3. Charkravarty, T. & Phuken, U.K. (1985). Reaction of acid gases with mixtures of amines. Chem. Eng. Prog. 40, 32–36.Search in Google Scholar

4. Pashaei, P., Nasiri, M. & Ghaemi, A. (2017). Experimental study and modeling of CO2 absorption into diethanolamine solutions using stirrer bubble column. Chem. Eng. Res. Design 121, 32–43. DOI: 10.1016/j.cherd.2017.03.001.10.1016/j.cherd.2017.03.001Open DOISearch in Google Scholar

5. Norouzbahari, S., Shahhosseini, Sh. & Ghaemi, A. (2015). Modeling of CO2 loading in aqueous solutions of piperazine: Application of an enhanced artificial neural network algorithm. J. Nat. Gas Sci. Eng. 24, 18–25. DOI: 10.1016/j.jngse.2015.03.011.10.1016/j.jngse.2015.03.011Open DOISearch in Google Scholar

6. Ghaemi, A., Shahhosseini, Sh. & Maragheh, MG. (2009). Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions. Chem. Eng. J. 149 (1), 110–117. DOI: 10.1016/j.cej.2008.10.020.10.1016/j.cej.2008.10.020Open DOISearch in Google Scholar

7. Nwaoha, C., Saiwan, C., Tontiwachwuthikul, P. & Supap, T., Rongwong W., Idem R., AL-Marri M.J. & Benamor, A. (2016). Carbon dioxide capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. J. Nat. Gas Sci. Eng. 33, 742–750. DOI: 10.1016/j.jngse.2016.06.002.10.1016/j.jngse.2016.06.002Open DOISearch in Google Scholar

8. Pal, P., Abu Kashabeh, A., Al-Asheh, S. & Banat, F. (2015). Role of aqueous methyldiethanolamine (MDEA) as solvent in natural gas sweetening unit and process contaminants with probable reaction pathway. J. Nat. Gas Sci. Eng. 24, 124–131. DOI: 10.1016/j.jngse.2015.03.007.10.1016/j.jngse.2015.03.007Search in Google Scholar

9. Qiu, K., Shang, J.F., Ozturk, M., Li, T.F., Chen, S.K., Zhang, L.Y. & Gu, X.H. (2014). Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening. J. Nat. Gas Sci. Eng. 21, 379–385. DOI: 10.1016/j.jngse.2014.08.023.10.1016/j.jngse.2014.08.023Open DOISearch in Google Scholar

10. Øi, L.E. (2010). CO2 removal by absorption: challenges in modeling, Math Compu. Model. Dynamic Sys. 16, 511–33. DOI: 10.1080/13873954.2010.491676.10.1080/13873954.2010.491676Search in Google Scholar

11. Boettinger, W., Maiwald, M. & Hasse, H. (2008). Online NMR spectroscopic study of species 626 distribution in MEA-CO2-H2O and DEA-H2O-CO2, Fluid Phase Equilibria. 263, 131–43. DOI: 10.1016/j.fluid.2007.09.017.10.1016/j.fluid.2007.09.017Open DOISearch in Google Scholar

12. Pashaei, P., Ghaemi, A. & Nasiri, M. (2016). Modeling and experimental study on the solubility and mass transfer of CO2 into aqueous DEA solution using a stirrer bubble column. RSC Adv. 6, 108075–108092. DOI: 10.1039/C6RA22589F.10.1039/C6RA22589FSearch in Google Scholar

13. Notz, R., Mangalapally, H.P. & Hasse, H. (2012). Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. Int. J. Greenh. Gas Contr. 6, 84–112. DOI: 10.1016/j.ijggc.2011.11.004.10.1016/j.ijggc.2011.11.004Open DOISearch in Google Scholar

14. Lee, I.Y., Kwak, N.S., Lee, J.H., Jang, K.R. & Shim, J.G. (2013). Oxidative Degradation of Alkanolamines with Inhibitors in CO2 Capture Process. Energy Proced. 37, 1830–1835. DOI:10.1016/j.egypro.2013.06.061.10.1016/j.egypro.2013.06.061Open DOISearch in Google Scholar

15. Luis, P. (2016). Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination 380, 93–99. DOI: 10.1016/j.desal.2015.08.004.10.1016/j.desal.2015.08.004Open DOISearch in Google Scholar

16. Freguia, S. & Rochelle, G.T. (2003). Modeling of CO2 Capture by Aqueous Monoethanolamine. AIChE J. 49, 1676–1686. DOI: 10.1002/aic.690490708.10.1002/aic.690490708Open DOISearch in Google Scholar

17. Lv, B., Guo, B., Zhou, Z. & Jing, G. (2015). Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. Environ. Sci. Technol. 49, 10728–10735. DOI: 10.1021/acs.est.5b02356.10.1021/acs.est.5b0235626236921Open DOISearch in Google Scholar

18. Xie, H.B., Zhou, Y.Z., Zhang, Y.K. & Johnson, J.K. (2010). Reaction mechanism of monoethanolamine with CO2 in aqueous solution from molecular modeling. J. Phys. Chem. A. 114, 11844–11852. DOI: 10.1021/jp107516k.10.1021/jp107516k20939618Open DOISearch in Google Scholar

19. Wong, K., Bustam, M.A. & Shariff, A.M. (2016). In situ measurement of physical solubility of carbon dioxide in loaded aqueous monoethanolamine by Raman spectroscopy. J. Nat. Gas Sci. Eng. 36, 305–313. DOI: 10.1016/j.jngse.2016.10.029.10.1016/j.jngse.2016.10.029Open DOISearch in Google Scholar

20. Han, B., Zhou, C.G., Wu, J.P., Tempel, D.J. & Cheng, H.S. (2011). Understanding CO2 capture mechanisms in aqueous monoethanolamine via first principles simulations. J. Physics Chem. Lett. 2, 522–526. DOI: 10.1021/jz200037s.10.1021/jz200037sOpen DOISearch in Google Scholar

21. Etemad, E., Ghaemi, A. & Shirvani, M. (2015). Rigorous correlation for CO2 mass transfer flux in reactive absorption processes. Int. J. Greenh. Gas Cont. 42, 288–295. DOI: 10.1016/j.ijggc.2015.08.011.10.1016/j.ijggc.2015.08.011Open DOISearch in Google Scholar

22. Moioli, S. & Pellegrini, L.A. & Gamba, S. (2012). Simulation of CO2 capture by MEA scrubbing with a ratebased model. Procedia Eng. 42, 1800–1810. DOI: 10.1016/j.proeng.2012.07.558.10.1016/j.proeng.2012.07.558Open DOISearch in Google Scholar

23. Rumpf, B. & Maurer, G. (1993). An Experimental and Theoretical Investigation on the Solubility of Carbon Dioxide in Aqueous Solutions of Strong Electrolytes. Ber. Bunsengesells. Physik. Chem. 97, 85–97. DOI: 10.1002/bbpc.19930970116.10.1002/bbpc.19930970116Open DOISearch in Google Scholar

24. Kent, R.L. & Eisenberg, B. (1976). Better Data for Amine Treating, 87–90.Search in Google Scholar

25. Ghaemi, A., Torab-Mostaedi, M., Ghannadi Maragheh, M. & Shahhosseini, Sh. (2011). Kinetics and Absorption Rate of CO2 into Partially Carbonated Ammonia Solutions, Chem. Eng. Commun. 198, 1169–1181. DOI: 10.1080/00986445.2010.525204.10.1080/00986445.2010.525204Open DOISearch in Google Scholar

26. Saul, A. & Wagner, W. (1987). International Equations for the Saturation Properties of Ordinary Water Substance. J. Phys. Chem. 16, 893–901. DOI: 10.1063/1.555787.10.1063/1.555787Open DOISearch in Google Scholar

27. Dymond, J.H. & Smith, E.B. The Virial Coefficients of Pure Gases and Mixtures, Oxford University Press: Oxford, UK, 1980.Search in Google Scholar

28. Hayden, J.G. & O’Connell, J.P. (1975). A Generalized Method for Predicting Second Virial Coefficients. Ind. Engi. Chem. Proc. Design Develop. 14, 209–216. DOI: 10.1021/i260055a003.10.1021/i260055a003Open DOISearch in Google Scholar

29. Brelvi, S.W., O’Connell, J.P. (1972). Corresponding States Correlations for Liquid Compressibility and Partial Molal Volumes of Gases at Infinite Dilution in Liquids. AIChE J. 18, 1239–1243. DOI: 10.1002/aic.690180622.10.1002/aic.690180622Open DOISearch in Google Scholar

30. Sander, B., Fredenslund, A. & Rasmussen, P. (1986) Calculation of Vapor-Liquid Equilibrium in Mixed Solvent/Salt Systems using an Extended UNIQUAC Equation, Chem. Eng. Sci. 41, 1171–1183. DOI: 10.1016/0009-2509(86)87090-7.10.1016/0009-2509(86)87090-7Open DOISearch in Google Scholar

31. Thomsen, K. (2005). Modeling electrolyte solutions with the extended universal quasi chemical (UNIQUAC) model. Pure Appl. Chem. 77, 531–542. DOI: 10.1351/pac200577030531.10.1351/pac200577030531Open DOISearch in Google Scholar

32. Aronu, U.E., Gondal, Sh., Hessen, E.T., Haug-Warberg, T., Hartono, A., Hoff, K.A. & Svendsen, H.F., (2011). Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120°C and model representation using the extended UNIQUAC framework. Chem. Eng. Sci. 66, 6393–6406. DOI: 10.1016/j.ces.2011.08.042.10.1016/j.ces.2011.08.042Open DOISearch in Google Scholar

33. Dugass, R.E. (2009). Carbon Dioxide Absorption, Desorption, and Diffusion in Aqueous Piperazine and Monoethanolamine, PhD Dissertation, University of Texas at Austin.Search in Google Scholar

34. Lagarias, J.C., Reeds, J.A., Wright, M.H. & Wright, P.E. (1998). Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147. DOI: 10.1137/S1052623496303470.10.1137/S1052623496303470Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo