Cite

Photovoltage formation across Si p-n junction exposed to laser radiation is experimentally investigated. Illumination of the junction with 1.06 μm wavelength laser radiation leads to formation of classical photovoltage Uphdue to intense electronhole pair generation. When the photon energy is lower than the semiconductor forbidden energy gap, the photovoltage U is found to consist of two components, U = Uf+ Uph. The first Uf is a fast one having polarity of thermoelectromotive force of hot carriers. The second Uphis classical photovoltage with polarity opposite to Uf. It is found that Ufis linearly dependent on laser intensity. The classical photovoltage is established to decrease with the rise of radiation wavelength due to decrease in two-photon absorption coefficient with wavelength. Predominance of each separate component in the formation of the net photovoltage depends on both laser wavelength and intensity

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties