1. bookVolume 33 (2015): Issue 1 (March 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Phase, microstructure and microwave dielectric properties of Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics

Published Online: 13 Mar 2015
Volume & Issue: Volume 33 (2015) - Issue 1 (March 2015)
Page range: 95 - 99
Received: 04 Jun 2014
Accepted: 28 Nov 2014
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics was prepared via conventional solid-state mixed-oxide route. The phase, microstructure and microwave dielectric properties of the sintered samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and a vector network analyzer. The microstructure comprised of circular and elongated plate-like grains. The semi quantitative analysis (EDS) of the circular and elongated grains revealed the existence of Mg0:95Ni0:05T2O5 as a secondary phase along with the parent Mg0:95Ni0:05Ti0:98Zr0:02O3 phase, which was consistent with the XRD findings. In the present study, εr ~17.1, Qufo~195855 ± 2550 GHz and τf ~ -46 ppm/K was achieved for the synthesized Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics sintered at 1325 °C for 4 h.

Keywords

[1] SEBASTIAN M.T., Dielectric Materials for Wireless Communication, 1st Edition, Elsevier Science, (2008).10.1016/B978-0-08-045330-9.00001-7Search in Google Scholar

[2] CHIA C.T., Ferroelectrics., 435 (2012), VII.10.1080/00150193.2012.751889Search in Google Scholar

[3] REANEY I.M., IDDLES D., J. Am. Ceram. Soc., 89 (2006), 2063.Search in Google Scholar

[4] HUANG C.L., LIU S.S., J. Alloy. Compd., 471 (2009), L9.10.1016/j.jallcom.2008.03.105Search in Google Scholar

[5] TAMURA H., KONOIKE T., SAKABE Y., WAKINO K., J. Am. Ceram. Soc., 67 (1984), C59.10.1111/j.1151-2916.1984.tb18828.xSearch in Google Scholar

[6] NOMURA S., KANETA K., Jpn. J. Appl. Phys., 33 (1984), 507.Search in Google Scholar

[7] ONADA M., KUWATA J., KANETA K., TOYAMA K., NOMURA S., Jpn. J. App. Phys., 21 (1982), 1707.Search in Google Scholar

[8] KIM B.K., HAMAGUCHI H., KIM I.T., HONG K.S., J. Am. Ceram. Soc., 78 (1995), 3117.Search in Google Scholar

[9] REANEY I.M., QAZI I., LEE W.E., J. Appl. Phys., 88 (2000), 6708.10.1063/1.1290737Search in Google Scholar

[10] CHAI L., AKBAS M.A., DAVIES P.K., PARISE J.B., Mater. Res. Bull., 33 (1998), 1261.Search in Google Scholar

[11] WAKINO K., Ferroelectrics, 91 (1989), 69.10.1080/00150198908015730Search in Google Scholar

[12] HUANG C.L., LIU S.S., Jpn. J. Appl. Phys., 46 (2007), 283.10.1143/JJAP.46.6595Search in Google Scholar

[13] SOHN J.H., INAGUMA Y., YOON S.O., ITOH M., NAKAMURA T., YOON S.J., KIM H. J., Jpn. J. Appl. Phys., 33 (1994), 5466.10.1143/JJAP.33.5466Search in Google Scholar

[14] TSENG C.F., J. Am. Ceram. Soc., 91 (2008), 4125.10.1111/j.1551-2916.2008.02779.xSearch in Google Scholar

[15] MANAN A., HUSSAIN I., Int. J. Mod. Phys. B, 28 (2014), 1450092.10.1142/S0217984914500924Search in Google Scholar

[16] SHANNON R.D., Acta Crystallogr. A, 32 (1976), 751.10.1107/S0567739476001551Search in Google Scholar

[17] TSENG C.F., HSU C.H., J. Am. Ceram. Soc., 92 (2009), 1149.10.1111/j.1551-2916.2009.03046.xSearch in Google Scholar

[18] IQBAL Y., MANAN A., J. Mater. Sci.-Mater. El., 23 (2012), 536.10.1007/s10854-011-0432-8Search in Google Scholar

[19] SHEN C.H., HUANG C.L., J. Am. Ceram. Soc., 92 (2009), 384.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo