Open Access

# A bifurcation result involving Sobolev trace embedding and the duality mapping of W1,p

| Jul 28, 2018

Cite

We consider the perturbed nonlinear boundary condition problem

${-Δpu=|u|p-2u+f(λ,x,u) in Ω|∇u|p-2∇u.ν=λρ(x)|u|p-2u on Γ.$$$\left\{ {\matrix{ { - \Delta _p u} \hfill & = \hfill & {\left| u \right|^{p - 2} u + f\left( {\lambda ,x,u} \right)\,{\rm{in}}\,\Omega } \hfill \cr {\left| {\nabla u} \right|^{p - 2} \nabla u.\nu } \hfill & = \hfill & {\lambda \rho \left( x \right)\left| u \right|^{p - 2} u\,{\rm{on}}\,\Gamma .} \hfill \cr } } \right.$$

Using the Sobolev trace embedding and the duality mapping defined on W1,p(Ω), we prove that this problem bifurcates from the principal eigenvalue λ1 of the eigenvalue problem

${-Δpu=|u|p-2u in Ω|∇u|p-2∇u.ν=λρ(x)|u|p-2u on Γ.$$$\left\{ {\matrix{ { - \Delta _p u} \hfill & = \hfill & {\left| u \right|^{p - 2} u\,{\rm{in}}\,\Omega } \hfill \cr {\left| {\nabla u} \right|^{p - 2} \nabla u.\nu } \hfill & = \hfill & {\lambda \rho \left( x \right)\left| u \right|^{p - 2} u\,{\rm{on}}\,\Gamma .} \hfill \cr } } \right.$$

eISSN:
2351-8227
Language:
English
Publication timeframe:
3 times per year
Journal Subjects: