1. bookVolume 52 (2015): Issue 3 (June 2015)
Journal Details
License
Format
Journal
eISSN
2255-8896
First Published
18 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Numerical 2D And 3D Simulations of a Spherical Fabry–Pérot Resonator for Application as a Reference Cavity for Laser Frequency Stabilisation

Published Online: 24 Jul 2015
Page range: 21 - 33
Journal Details
License
Format
Journal
eISSN
2255-8896
First Published
18 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

We report on the results of a numerical study of deformations of a spherical Fabry-Pérot cavity that can be used for laser frequency stabilisation. It is demonstrated that for a precise simulation of the cavity deformations a 3D model has to be used instead of a simpler 2D model, which employs simulation on the symmetry plane of the cavity. To lower the sensitivity to environmental perturbations, it is suggested to use a material with a low density and a high Young’s modulus. We also show that the mechanical resonance frequencies of the cavity are mainly determined by the size of the cavity.

Keywords

1. Willke, B., Danzmann, K., Frede, M., King, P., Kracht, D., Kwee, P., Puncken, O., Savage, R. L., Schulz, B., Seifert, F., Veltkamp, C., Wagner, S., Weßels, P. and Winkelmann, L. (2008). Stabilized lasers for advanced gravitational wave detectors. Class. Quantum Gravity 25, 114040.10.1088/0264-9381/25/11/114040Search in Google Scholar

2. Pellegrini, S., Buller, G.S., Smith, J.M., Wallace, A.M., and Cova, S. (2000). Laser-based distance measurement using picosecond resolution time-correlated single-photon counting. Meas. Sci. Technol. 11, 712-716.10.1088/0957-0233/11/6/314Search in Google Scholar

3. Eisele, C., Nevsky, A., and Schiller, S. (2009). Laboratory test of the isotropy of light propagation at the 10-17 level. Phys. Rev. Lett. 103, 090401.10.1103/PhysRevLett.103.09040119792767Search in Google Scholar

4. Gill, P. (2005). Optical frequency standards. Metrologia 42, S125-S137.10.1088/0026-1394/42/3/S13Search in Google Scholar

5. Rafac, R., Young, B., Beall, J., Itano, W., Wineland, D., and Bergquist, J. (2000). Subdekahertz ultraviolet spectroscopy of 199Hg+. Phys. Rev. Lett. 85, 2462-2465.10.1103/PhysRevLett.85.246210978082Search in Google Scholar

6. Thorpe, M.J., Rippe, L., Fortier, T.M., Kirchner, M.S., and Rosenband, T. (2011). Frequency stabilization to 6 × 10−16 via spectral-hole burning. Nat. Photonics 5, 688-693.10.1038/nphoton.2011.215Search in Google Scholar

7. Alnis, J., Matveev, A., Kolachevsky, N., Udem, T., and Hänsch, T.W. (2008). Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow- expansion glass Fabry-Pérot cavities. Phys. Rev. A 77, 053809.10.1103/PhysRevA.77.053809Search in Google Scholar

8. Drever, R.W.P., Hall, J.L., Kowalski, F.V., Hough, J., Ford, G.M., Munley, A.J., and Ward, H. (1983). Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B Photophysics Laser Chem. 31, 97-105.Search in Google Scholar

9. Notcutt, M., Ma, L.S., Ye, J., and Hall, J.L. (2005). Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Opt. Lett. 30, 1815-1817.10.1364/OL.30.00181516092355Search in Google Scholar

10. Webster, S., Oxborrow, M., and Gill, P. (2007). Vibration insensitive optical cavity. Phys. Rev. A 75, 011801.10.1103/PhysRevA.75.011801Search in Google Scholar

11. Alnis, J., Matveev, A., Kolachevsky, N., Wilken, T., Holzwarth, R., and Hänsch, T.W. (2008). Stable diode lasers for hydrogen precision spectroscopy. Eur. Phys. J. Spec. Top. 163, 89-94.10.1140/epjst/e2008-00811-ySearch in Google Scholar

12. Millo, J., Magalhães, D., Mandache, C., Le Coq, Y., English, E., Westergaard, P., Lodewyck, J., Bize, S., Lemonde, P., and Santarelli, G. (2009). Ultrastable lasers based on vibration insensitive cavities. Phys. Rev. A 79, 053829.10.1103/PhysRevA.79.053829Search in Google Scholar

13. Jin, M., Yan-Yi, J., Su, F., Zhi-Yi, B., and Long-Sheng, M. (2009) Vibration insensitive optical ring cavity. Chinese Phys. B 18, 2334-2339.Search in Google Scholar

14. Leibrandt, D.R., Thorpe, M.J., Notcutt, M., Drullinger, R.E., Rosenband, T., and Bergquist, J.C. (2011). Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. Opt. Express 19, 3471-82.10.1364/OE.19.00347121369170Search in Google Scholar

15. Webster, S., and Gill, P. (2011). Force-insensitive optical cavity. Opt. Lett. 36, 3572-4.10.1364/OL.36.00357221931394Search in Google Scholar

16. Alnis, J., Schliesser, A., Wang, C.Y., Hofer, J., Kippenberg, T.J., and Hänsch, T.W. (2011). Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys. Rev. A 84, 011804.10.1109/CLEOE.2011.5943469Search in Google Scholar

17. Numata, K., Kemery, A., and Camp, J. (2004). Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602.10.1103/PhysRevLett.93.25060215697887Search in Google Scholar

18. Leibrandt, D.R., Thorpe, M.J., Bergquist, J.C., and Rosenband, T. (2011). Field-test of a robust, portable, frequency-stable laser. Opt. Express 19, 10278-10286.10.1364/OE.19.01027821643285Search in Google Scholar

19. Vogt, S., Lisdat, C., Legero ,T., Sterr, U., Ernsting, I., Nevsky, A., and Schiller, S. (2011). Demonstration of a transportable 1 Hz-linewidth laser. Appl. Phys. B 104, 741-745. 3310.1007/s00340-011-4652-7Search in Google Scholar

20. Chen, L., Hall, J., Ye, J., Yang, T., Zang, E., and Li, T. (2006). Vibration-induced elastic deformation of Fabry-Perot cavities. Phys. Rev. A 74, 053801.10.1103/PhysRevA.74.053801Search in Google Scholar

21. Nazarova, T., Riehle, F., and Sterr, U. (2006).Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser. Appl. Phys. B 83, 531-536.10.1007/s00340-006-2225-ySearch in Google Scholar

22. Hall, J., Taubman, M., and Ye, J. (2001). Laser stabilization. In Handbook of Optics, M. Bass, ed., 2nd ed. McGRAW-HILL, p. 814.Search in Google Scholar

23. Davis, M.J., Hayden, J.S., and Farber, D.L. (2007). High-precision thermal expansion measurements using small Fabry-Perot etalons. In Proceedings of SPIE - The International Society for Optical Engineering, R. J. Jones, ed. , Vol. 6673, p. 66730R-66730R-12.10.1117/12.734423Search in Google Scholar

24. Numata, K., Bianc, G.B., Ohishi, N., Sekiya, A., Otsuka, S., Kawabe, K., Ando, M., and Tsubono, K. (2000). Measurement of the intrinsic mechanical loss of low-loss samples using a nodal support. Phys. Lett. A 276, 37-46.10.1016/S0375-9601(00)00646-0Search in Google Scholar

25. Richard, J.-P., and Hamilton, J.J. (1991). Cryogenic monocrystalline silicon Fabry-Perot cavity for the stabilization of laser frequency. Rev. Sci. Instrum. 62, 2375.10.1063/1.1142249Search in Google Scholar

26. Kessler, T., Hagemann, C., Grebing, C., Legero, T., Sterr, U., Riehle, F., Martin, M.J., Chen, L., and Ye, J. (2012). A sub-40-mHz-linewidth laser based on a silicon singlecrystal optical cavity. Nat. Photonics 6, 687-692.10.1038/nphoton.2012.217Search in Google Scholar

27. Tao, R., Hinchet, R., Ardila, G., and Mouis, M. (2013). Evaluation of vertical integrated nanogenerator performances in flexion. J. Phys. Conf. Ser. 476, 012006.10.1088/1742-6596/476/1/012006Search in Google Scholar

28. Liang, Z., and Hua-Min, Q. (2014). Mechanical research and development of monocrystalline silicon neutron beam window for CSNS. Chinese Physics C, 5.Search in Google Scholar

29. Nevsky, A.Y., Eichenseer, M., von Zanthier, J., and Walther, H. (2002). A Nd:YAG Laser with short-term frequency stability at the Hertz-level. Opt. Commun. 210, 91-100.10.1016/S0030-4018(02)01763-7Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo