1. bookVolume 52 (2015): Issue 3 (June 2015)
Journal Details
License
Format
Journal
eISSN
2255-8896
First Published
18 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Broadband Fabry–Pérot Resonator From Zerodur for Laser Stabilisation Below 1KHZ Linewidth With < 100 HZ/S Drift and Reduced Sensitivity to Vibrations

Published Online: 24 Jul 2015
Page range: 11 - 20
Journal Details
License
Format
Journal
eISSN
2255-8896
First Published
18 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

Here we demonstrate the results of creating a two-mirror Fabry-Pérot resonator (FPR) that allows achieving the spectral width of a stabilised laser line below 1 kHz. It had low expansion Zerodur spacer and broadband high reflectance mirrors (99.85% in the range of 630 to 1140 nm). FPR was vertically mid-plane mounted for reduced sensitivity to vibrations and included in two shields inside a vacuum chamber to lower temperature fluctuations. Peltier element was used for temperature stabilisation at zero-expansion temperature. Pound-Drever-Hall (PDH) technique was applied. The signal from FPR was compared to ultra-stable signal (of about 1 Hz linewidth) to form a beat note signal. For the best performance, width of the beat note signal was below 1 kHz with the linear drift of about 23 Hz/s at 780 nm. The Allan deviation showed relative stability of the signal to be about 1 × 10-12.

Keywords

1. Demtröder, W. (2008). Laser Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-73418-510.1007/978-3-540-73418-5Search in Google Scholar

2. Webster, S., Oxborrow, M., & Gill, P. (2007). Vibration insensitive optical cavity. Physical Review A, 75(1), 011801. doi:10.1103/PhysRevA.75.01180110.1103/PhysRevA.75.011801Search in Google Scholar

3. Matveev, A. N., Kolachevsky, N. N., Alnis, J., & Hänsch, T. W. (2008). Semiconductor laser with the subhertz linewidth. Quantum Electronics, 38(10), 895-902. doi:10.1070/ QE2008v038n10ABEH01380610.1070/QE2008v038n10ABEH013806Search in Google Scholar

4. Leibrandt, D. R., Thorpe, M. J., Notcutt, M., Drullinger, R. E., Rosenband, T., & Bergquist, J. C. (2011). Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. Optics Express, 19(4), 3471-82. doi:10.1364/ OE.19.00347110.1364/OE.19.00347121369170Search in Google Scholar

5. Webster, S., & Gill, P. (2011). Force-insensitive optical cavity. Optics Letters, 36(18), 3572-4. doi:10.1364/OL.36.003572 1910.1364/OL.36.00357221931394Search in Google Scholar

6. Alnis, J., Matveev, A., Kolachevsky, N., Udem, T., & Hänsch, T. W. (2008). Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralowexpansion glass Fabry-Pérot cavities. Physical Review A, 77(5), 053809. doi:10.1103/ PhysRevA.77.05380910.1103/PhysRevA.77.053809Search in Google Scholar

7. Numata, K., Kemery, A., & Camp, J. (2004). Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities. Physical Review Letters, 93(25), 250602. doi:10.1103/PhysRevLett.93.25060210.1103/PhysRevLett.93.25060215697887Search in Google Scholar

8. Kessler, T., Legero, T., & Sterr, U. (2011). Thermal noise in optical cavities revisited. Journal of the Optical Society of America B, 29(1), 178. doi:10.1364/JOSAB.29.00017810.1364/JOSAB.29.000178Search in Google Scholar

9. Drever, R. W. P., Hall, J. L., Kowalski, F. V., Hough, J., Ford, G. M., Munley, A. J., & Ward, H. (1983). Laser phase and frequency stabilization using an optical resonator. Applied Physics B Photophysics and Laser Chemistry, 31(2), 97-105. doi:10.1007/ BF0070260510.1007/BF00702605Search in Google Scholar

10. Black, E. D. (2001). An introduction to Pound-Drever-Hall laser frequency stabilization. American Journal of Physics, 69(1), 79. doi:10.1119/1.128666310.1119/1.1286663Search in Google Scholar

11. Bloom, B. J., Nicholson, T. L., Williams, J. R., Campbell, S. L., Bishof, M., Zhang, X., Zhang, W., Bromley, S.L, Ye, J. (2014). An optical lattice clock with accuracy and stability at the 10(-18) level. Nature, 506(7486), 71-5. doi:10.1038/nature1294110.1038/nature1294124463513Search in Google Scholar

12. Yu, Y., Mitryk, S., & Mueller, G. (2014). Arm locking for space-based laser interferometry gravitational wave observatories. Physical Review D, 90(6), 062005. doi:10.1103/ PhysRevD.90.06200510.1103/PhysRevD.90.062005Search in Google Scholar

13. Batteiger, V., Knünz, S., Herrmann, M., Saathoff, G., Schüssler, H., Bernhardt, B., Wilken, T., Holzwarth, R., Hänsch, T.W., Udem, T. (2009). Precision spectroscopy of the 3s-3p fine-structure doublet in Mg+. Physical Review A, 80(2), 022503. doi:10.1103/ PhysRevA.80.02250310.1103/PhysRevA.80.022503Search in Google Scholar

14. Fescenko, I., Alnis, J., Schliesser, A., Wang, C. Y., Kippenberg, T. J., & Hänsch, T. W. (2012). Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator. Optics Express, 20(17), 19185-93.10.1364/OE.20.01918523038559Search in Google Scholar

15. Sesko, D., Fan, C. G., & Wieman, C. E. (1988). Production of a cold atomic vapor using diode-laser cooling. Journal of the Optical Society of America B.10.1364/JOSAB.5.001225Search in Google Scholar

16. Oxley, P., & Collins, P. (2010). Frequency stabilization of multiple lasers and Rydberg atom spectroscopy. Applied Physics B, 101(1-2), 23-31. doi:10.1007/s00340-010-4154-z10.1007/s00340-010-4154-zSearch in Google Scholar

17. Dinesan, H., Fasci, E., Castrillo, A., & Gianfrani, L. (2014). Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Optics Letters, 39(7), 2198-201. doi:10.1364/ OL.39.0021910.1364/OL.39.00219824686710Search in Google Scholar

18. Cundiff, S. T., & Ye, J. (2005). Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. Boston: Springer. doi:10.1007/b10245010.1007/b102450Search in Google Scholar

19. Wieman, C. E., & Hollberg, L. (1991). Using diode lasers for atomic physics. Review of Scientific Instruments, 62(1), 1-20. doi:10.1063/1.114230510.1063/1.1142305Search in Google Scholar

20. Izumi, K., Sigg, D., & Barsotti, L. (2014). Self-amplified lock of an ultra-narrow linewidth optical cavity. Optics Letters, 39(18), 5285. doi:10.1364/OL.39.00528510.1364/OL.39.00528526466252Search in Google Scholar

21. Zhu, M., Wei, H., Wu, X., & Li, Y. (2015). Fabry-Pérot interferometer with picometer resolution referenced to an optical frequency comb. Optics and Lasers in Engineering, 67, 128-134. doi:10.1016/j.optlaseng.2014.11.01010.1016/j.optlaseng.2014.11.010Search in Google Scholar

22. Riehle, F. (2003). Frequency Standards. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/352760599110.1002/3527605991Search in Google Scholar

23. Allan, D. W. (1966). Statistics of atomic frequency standards. Proc. IEEE, 54, 221-230. 2010.1109/PROC.1966.4634Search in Google Scholar

24. Rutman, J. (1978). Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress. Proceedings of the IEEE, 66(9), 1048-1075. doi:10.1109/PROC.1978.1108010.1109/PROC.1978.11080Search in Google Scholar

25. Melikov, A. K., Krüger, U., Zhou, G., Madsen, T. L., & Langkilde, G. (1997). Air temperature fluctuations in rooms. Building and Environment, 32(2), 101-114.10.1016/S0360-1323(96)00034-0Search in Google Scholar

26. Private communication of J.A. with hydrogen maser CH1-75A manufacturer Quartzlock.Search in Google Scholar

27. Sterr, U., Legero, T., Kessler, T., Schnatz, H., Grosche, G., Terra, O., & Riehle, F. (2009). Ultrastable lasers - new developments and applications. Proc. of SPIE, 7431, 74310A-14. doi:10.1117/12.82521710.1117/12.825217Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo