1. bookVolume 25 (2018): Issue 3 (September 2018)
Journal Details
License
Format
Journal
eISSN
2084-4549
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Detection of Wastewater Treatment Process Disturbances in Bioreactors Using the E-Nose Technology

Published Online: 23 Oct 2018
Volume & Issue: Volume 25 (2018) - Issue 3 (September 2018)
Page range: 405 - 418
Journal Details
License
Format
Journal
eISSN
2084-4549
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Wastewater treatment processes are subject to numerous disturbances during biological treatment of wastewater. In order to achieve and sustain suitable conditions of the process, basic wastewater parameters should be frequently monitored. While great improvements have been made in the automatization of treatment process, little is known about automatic measuring systems that can detect unusual process conditions in a bioreactor. Tracking these parameters can be difficult and the time required for the determination might vary from several minutes to few days. The objective of this study is to evaluate the use of an electronic nose in-house device (based on a non-selective gas sensor array) for the detection of process disturbances in a lab-scale sequencing batch reactor (SBR) during biological treatment of wastewater with activated sludge. Measurements were performed during a 12-hours working cycle. Continuous analyses of the headspace were performed using a sensor array based on the resistive Metal Oxide Semiconductor type (MOS) gas sensor. Based on the data obtained and the PCA analysis, this study showed that the e-nose technology can be used to predict or retrieve information about potential disruptions during wastewater processes using the e-nose technology.

Keywords

[1] Thomas O, Theraulaz F, Cerda V, Constant D, Quevauviller P. Wastewater quality monitoring. Trends Anal Chem. 1997;16(7):419-424. DOI: 10.1016/S0165-9936(97)82859-2.10.1016/S0165-9936(97)82859-2Open DOISearch in Google Scholar

[2] Lobos-Moysa E, Dudziak M, Bodzek M. Effect of fatty acids and sterols on the efficiency of wastewater treatment by the activated sludge process in a batch system. Ochr Srod. 2010;32(2):53-56.Search in Google Scholar

[3] Pomiès M, Choubert JM, Wisniewski C, Coquery M. Modelling of micropollutant removal in biological wastewater treatments: a review. Sci Total Environ. 2013;443:733-748. DOI: 10.1016/j.scitotenv.2012.11.037.10.1016/j.scitotenv.2012.11.037Open DOISearch in Google Scholar

[4] Waclawek S, Grubel K, Chlad Z, Dudziak M, Cernik M. The impact of oxone on disintegration and dewaterability of waste activated sludge. Water Environ Res. 2016;88(2):152-157. DOI: 10.2175/106143016X14504669767139.10.2175/106143016X1450466976713926803102Open DOISearch in Google Scholar

[5] Guz Ł, Sobczuk H, Suchorab Z. Odor measurement using portable device with semiconductor gas sensors array. Przem Chem. 2010;89(4):378-381.Search in Google Scholar

[6] Zhang W, Tian F, Song A, Hu Y. Research on electronic nose system based on continuous wide spectral gas sensing. Microchem J. 2018;140:1-7. DOI: 10.1016/j.microc.2018.03.030.10.1016/j.microc.2018.03.030Open DOISearch in Google Scholar

[7] Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. Sensors. 2009;9(7):5099-5148. DOI: 10.3390/s90705099.10.3390/s90705099Open DOISearch in Google Scholar

[8] Kalman EL, Löfvendahl A, Winquist F, Lundström I. Classification of complex gas mixtures from automotive leather using an electronic nose. Anal Chim Acta. 2000;403(1-2):31-38. DOI: 10.1016/S0003-2670(99)00604-2.10.1016/S0003-2670(99)00604-2Search in Google Scholar

[9] Wolfrum EJ, Meglen RM, Peterson D, Sluiter J. Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sens Actuator B. 2006;115(1):322-329. DOI: 10.1016/j.snb.2005.09.026.10.1016/j.snb.2005.09.026Open DOISearch in Google Scholar

[10] Krivetskiy V, Malkov I, Garshev A. Chemically modified nanocrystalline SnO2-based materials for nitrogen-containing gases detection using gas sensor array. J Alloy Compd. 2017;691:514-523. DOI: 10.1016/j.jallcom.2016.08.275.10.1016/j.jallcom.2016.08.275Search in Google Scholar

[11] Nicolas J, Cerisier C, Delva J. Potential of a network of electronic noses to assess in real time the odour annoyance in the environment of a compost facility. 3rd Biannual Int Conf Environ Odour Monitoring. 2012;30:133-138. DOI: 10.3303/CET1230023.10.3303/CET1230023Open DOISearch in Google Scholar

[12] Kateb B, Ryan MA, Homer ML, Lara LM, Yin Y, Higa K, et al. Sniffing out cancer using the JPL electronic nose: A pilot study of a novel approach to detection and differentiation of brain cancer. Neuroimage. 2009;47(S2),T5-T9. DOI: 10.1016/j.neuroimage.2009.04.015.10.1016/j.neuroimage.2009.04.01519362154Open DOISearch in Google Scholar

[13] Bruins M, Rahim Z, Bos A, van de Sande WWJ, Endtz HP, van Belkum A. Diagnosis of active tuberculosis by e-nose analysis of exhaled air. Tuberculosis. 2013;93(2):232-238. DOI: 10.1016/j.tube.2012.10.002.10.1016/j.tube.2012.10.00223127779Open DOISearch in Google Scholar

[14] Baldwin EA, Bai J, Plotto A, Dea S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors. 2011;11:4744-4766. DOI: 10.3390/s110504744.10.3390/s110504744323140522163873Open DOISearch in Google Scholar

[15] Bonnefille M. Electronic noses: Sniffing fast, safe and objective. Cosmetics. 2007;6,9-12.Search in Google Scholar

[16] Śliwińska M, Wiśniewska P, Dymerski T, Namieśnik J, Wardencki W. Food analysis using artificial senses. J Agric Food Chem. 2014;62(7):1423-1448. DOI: 10.1021/jf403215y.10.1021/jf403215y24506450Open DOISearch in Google Scholar

[17] Wilson AD. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors. 2013;13(2):2295-2348. DOI: 10.3390/s130202295.10.3390/s130202295364943323396191Open DOISearch in Google Scholar

[18] Gebicki J, Bylinski H, Namiesnik J. Measurement techniques for assessing the olfactory impact of municipal sewage treatment plants. Environ Monit Assess. 2016;188(1):32. DOI: 10.1007/s10661-015-5024-2.10.1007/s10661-015-5024-2467981226670041Open DOISearch in Google Scholar

[19] Zhang WL, Tian FC, Song A, Hu YW. Research on electronic nose system based on continuous wide spectral gas sensing. Microchem J. 2018;140:1-7. DOI: 10.1016/j.microc.2018.03.030.10.1016/j.microc.2018.03.030Open DOISearch in Google Scholar

[20] Gancarz M, Wawrzyniak J, Gawrysiak-Witulska M, Wiącek D, Nawrocka A, Tadla M, et al. Application of electronic nose with MOS sensors to prediction of rapeseed quality. Measurement. 2017;103:227-234. DOI: 10.1016/j.measurement.2017.02.042.10.1016/j.measurement.2017.02.042Open DOISearch in Google Scholar

[21] Guthrie B. Machine Olfaction. In: Buettner A, editor. Springer Handbook of Odor. Springer Handbooks. Cham: Springer; 2017. DOI: 10.1007/978-3-319-26932-0_2110.1007/978-3-319-26932-0_21Open DOISearch in Google Scholar

[22] Szulczyński B, Wasilewski T, Wojnowski W, Majchrzak T, Dymerski T, Namieśnik J, et al. Different ways to apply a measurement instrument of e-nose type to evaluate ambient air quality with respect to odour nuisance in a vicinity of municipal processing plants. Sensors. 2017;17(11):2671. DOI: 10.3390/s17112671.10.3390/s17112671571290829156597Open DOISearch in Google Scholar

[23] Sunil TT, Chaudhuri S, Sharma MU. Sensor Selection for E-Nose. In: Pal A, Pal SK, editors. Pattern Recognition and Big Data. Singapore: World Scientific Publishing Co Pte Ltd; 2018 DOI: 10.1142/9789813144552_0023.10.1142/9789813144552_0023Open DOISearch in Google Scholar

[24] Nakamoto T. Odor handling and delivery systems. In: Pearce TC, Schiffman SS, Nagle HT, Gardner JW, editors. Handbook of Machine Olfaction. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2003. DOI: 10.1002/3527601597.ch3.10.1002/3527601597.ch3Open DOISearch in Google Scholar

[25] Blanco-Rodríguez A, Camara VF, Campo F, Becherán L, Durán A, Vieira VD, et al. Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Res. 2018;134,92-100. DOI: 10.1016/j.watres.2018.01.067.10.1016/j.watres.2018.01.06729407655Open DOISearch in Google Scholar

[26] Babko R, Kuzmina T, Jaromin-Glen K, Bieganowski A. Bioindication assessment of activated sludge adaptation in a lab-scale experiment. Ecol Chem Eng S. 2014;21(4): 605-616. DOI: 10.1515/eces-2014-0043.10.1515/eces-2014-0043Open DOISearch in Google Scholar

[27] Sytek-Szmeichel K, Podedworna J, Zubrowska-Sudol M. Efficiency of wastewater treatment in SBR and IFAS-MBSBBR systems in specified technological conditions. Water Sci Technol. 2016;73(6):1349-1356. DOI: 10.2166/wst.2015.611.10.2166/wst.2015.61127003075Open DOISearch in Google Scholar

[28] Świerczyńska A, Bohdziewicz J, Puszczało E. Treatment of industrial wastewater in the sequential membrane bioreactor. Ecol Chem Eng S. 2016;23(2):285-295. DOI: 10.1515/eces-2016-0020.10.1515/eces-2016-0020Open DOISearch in Google Scholar

[29] Capelli L, Sironi S, Céntola P, Del Rosso R, Grande MI. Electronic noses for the continuous monitoring of odours from a wastewater treatment plant at specific receptors: Focus on training methods. Sens Actuator B. 2008;131:53-62. DOI: 10.1016/j.snb.2007.12.004.10.1016/j.snb.2007.12.004Open DOISearch in Google Scholar

[30] Nake A, Dubreuil B, Raynaud C, Talou T. Outdoor in situ monitoring of volatile emissions from wastewater treatment plants with two portable technologies of electronic noses. Sens Actuator B. 2005;106:36-39. DOI: 10.1016/j.snb.2004.05.034.10.1016/j.snb.2004.05.034Open DOISearch in Google Scholar

[31] Giuliani S, Zarra T, Nicolas J, Naddeo V. An alternative approach of the e-nose training phase in odour impact assessment. Chem Eng Transact. 2012;30:139-144. DOI: 10.3303/CET1230024.10.3303/CET1230024Open DOISearch in Google Scholar

[32] Littarru P. Environmental odours assessment from waste treatment plants: dynamic olfactometry in combination with sensorial analysers “electronic noses”. Waste Manage. 2007;27(2):302-309. DOI: 10.1016/j.wasman.2006.03.011.10.1016/j.wasman.2006.03.01116766175Open DOISearch in Google Scholar

[33] Zarra T, Reiser M, Naddeo V, Belgiorno V, Kranert M. Odour emissions characterization from wastewater treatment plants by different measurement methods. Chem Eng Transact. 2014;40:37-42. DOI: 10.3303/CET1440007.10.3303/CET1440007Open DOISearch in Google Scholar

[34] Barczak R, Kulig A, Szydłowski M. Olfactometric methods application for odour nuisance assessment of wastewater treatment facilities in Poland. Chem Eng Transact. 2012;30,187-192. DOI: 10.3303/CET1230032.10.3303/CET1230032Open DOISearch in Google Scholar

[35] Michałkiewicz M, Kruszelnicka I, Widomska M. The variability of the concentration of bioaerosols above the chambers of biological wastewater treatment. Ecol Chem Eng S. 2018;25(2):267-278. DOI: 10.1515/eces-2018-0018.10.1515/eces-2018-0018Open DOISearch in Google Scholar

[36] Wang YJ, Lan HC, Li L, Yang KX, Qu JH, Liu JX. Chemicals and microbes in bioaerosols from reaction tanks of six wastewater treatment plants: survival factors, generation sources, and mechanisms. Sci Rep. 2018;8,9362. DOI: 10.1038/s41598-018-27652-2.29921977Search in Google Scholar

[37] Onkal-Engin G, Demir I, Engin SN. E-nose response classification of sewage odors by neural networks and fuzzy clustering. Advanc Natural Comput. 2005;3611:648-651. DOI: 10.1007/11539117_92.10.1007/11539117_92Open DOISearch in Google Scholar

[38] Stuetz RM, Fenner RA, Engin G. Assessment of odours from sewage treatment works by an electronic nose. H2S analysis and olfactometry. Water Res. 1999;33(2):453-461. DOI: 10.1016/S0043-1354(98)00246-2.10.1016/S0043-1354(98)00246-2Open DOISearch in Google Scholar

[39] Dewettinck T, Van Hege K, Verstraete W. The electronic nose as a rapid sensor for volatile compounds in treated domestic wastewater. Water Res. 2001;35(10):75-83. DOI: 10.1016/S0043-1354(00)00530-3.10.1016/S0043-1354(00)00530-3Search in Google Scholar

[40] Bourgeois W, Gardey G, Servieres M, Stuetz RM. A chemical sensor array based system for protecting wastewater treatment plants. Sens Actuator B. 2003;91:109-116. DOI: 10.1016/S0925-4005(03)00074-1.10.1016/S0925-4005(03)00074-1Open DOISearch in Google Scholar

[41] Bourgeois W, Stuetz RM. Use of a chemical sensor array for detecting pollutants in domestic wastewater. Water Res. 2002;36,4505-4512. DOI: 10.1016/S0043-1354(02)00183-5.10.1016/S0043-1354(02)00183-512418653Open DOISearch in Google Scholar

[42] Bourgeois W, Hogben P, Pike A, Stuetz RM. Development of a sensor array based measurement system for continuous monitoring of water and wastewater. Sens Actuator B. 2003;88(3):312-319. DOI: 10.1016/S0925-4005(02)00377-5.10.1016/S0925-4005(02)00377-5Open DOISearch in Google Scholar

[43] Guz Ł, Łagód G, Jaromin-Gleń K, Suchorab Z, Sobczuk H, Bieganowski A. Application of gas sensor arrays in assessment of wastewater purification effects. Sensors. 2015;15:1-21. DOI: 10.3390/s150100001.10.3390/s150100001432700425545263Open DOISearch in Google Scholar

[44] Jaromin-Gleń K, Babko R, Łagód G, Sobczuk H. Community composition and abundance of protozoa under different concentration of nitrogen compounds at “Hajdow” wastewater treatment plant. Ecol Chem Eng S. 2013;20(1):127-139. DOI: 10.2478/eces-2013-0010.10.2478/eces-2013-0010Open DOISearch in Google Scholar

[45] Guz Ł, Sobczuk H, Wasag H. Device for determination of odour chemical substances in air. Przem Chem. 2009;88(5):446-449.Search in Google Scholar

[46] TGS 2600 - for the detection of Air Contaminants. Figaro series datasheet. http://www.figarosensor.com. 2018.Search in Google Scholar

[47] Krzanowski WJ. Principles of Multivariate Analysis: A User’s Perspective. New York: Oxford University Press Inc.; 2008. ISBN 9780198507086.Search in Google Scholar

[48] Fu J, Li G, Qin Y, Freeman WJ. A pattern recognition method for electronic noses based on an olfactory neural network. Sens Actuator B. 2007;125(2):489-497. DOI: 10.1016/j.snb.2007.02.058.10.1016/j.snb.2007.02.058Open DOISearch in Google Scholar

[49] Smolarz A, Kotyra A, Wojcik W, Ballester J. Advanced diagnostics of industrial pulverized coal burner using optical methods and artificial intelligence. Exp Therm Fluid Sci. 2012;43:82-89. DOI: 10.1016/j.snb.2007.02.058.10.1016/j.snb.2007.02.058Open DOISearch in Google Scholar

[50] Brereton RG, Lloyd GR. Partial least squares discriminant analysis: taking the magic away. J Chemometr. 2014;28(4):213-225. DOI: 10.1002/cem.2609.10.1002/cem.2609Open DOISearch in Google Scholar

[51] Kamiński K, Kamiński W, Mizerski T. Application of artificial neural networks to the technical condition assessment of water supply systems. Ecol Chem Eng S. 2017;24(1),31-40. DOI: 10.1515/eces-2017-0003.10.1515/eces-2017-0003Open DOISearch in Google Scholar

[52] Macek-Kamińska K, Stemplewski S. Application of neural networks in diagnostics of chemical compounds based on their infrared spectra. Ecol Chem Eng S. 2017;24(1):107-118. DOI: 10.1515/eces-2017-0008.10.1515/eces-2017-0008Open DOISearch in Google Scholar

[53] Onkal-Engina G, Demir I, Engin SN. Determination of the relationship between sewage odour and BOD by neural networks. Environ Model Softw. 2005;20:843-850. DOI: 10.1016/j.envsoft.2004.04.012.10.1016/j.envsoft.2004.04.012Open DOISearch in Google Scholar

[54] Stuetz RM, Fenner RA, Engin G. Characterisation of wastewater using an electronic nose. Water Res. 1999;33(2):442-452. DOI: 10.1016/S0043-1354(98)00245-0.10.1016/S0043-1354(98)00245-0Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo