Cite

This work deals with Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of a turbulent gravity current in a gas, performed by means of a Discontinuous Galerkin (DG) Finite Elements method employing, in the LES case, LES-DG turbulence models previously introduced by the authors. Numerical simulations of non-Boussinesq lock-exchange benchmark problems show that, in the DNS case, the proposed method allows to correctly reproduce relevant features of variable density gas ows with gravity. Moreover, the LES results highlight, also in this context, the excessively high dissipation of the Smagorinsky model with respect to the Germano dynamic procedure.

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics