1. bookVolume 7 (2016): Issue 3 (September 2016)
    "Special Issue on New Trends in Semi-Lagrangian Methods, Guest Editors: Luca Bonaventura, Maurizio Falcone and Roberto Ferretti
Journal Details
License
Format
Journal
eISSN
2038-0909
First Published
15 Dec 2014
Publication timeframe
1 time per year
Languages
English
access type Open Access

Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core

Published Online: 01 Oct 2016
Volume & Issue: Volume 7 (2016) - Issue 3 (September 2016) - "Special Issue on New Trends in Semi-Lagrangian Methods, Guest Editors: Luca Bonaventura, Maurizio Falcone and Roberto Ferretti
Page range: 74 - 98
Received: 12 Jun 2015
Accepted: 29 Jul 2015
Journal Details
License
Format
Journal
eISSN
2038-0909
First Published
15 Dec 2014
Publication timeframe
1 time per year
Languages
English
Abstract

In today’s atmospheric numerical modeling, scalable and highly accurate numerical schemes are of particular interest. To address these issues Galerkin schemes, such as the spectral element method, have received more attention in the last decade. They also provide other state-of-the-art capabilities such as improved conservation. However, the tracer transport of hundreds of tracers, e.g., in the chemistry version of the Community Atmosphere Model, is still a performance bottleneck. Therefore, we consider two conservative semi-Lagrangian schemes. Both are designed to be multi-tracer efficient, third order accurate, and allow significantly longer time steps than explicit Eulerian formulations. We address the difficulties arising on the cubed-sphere projection and on parallel computers and show the high scalability of our approach. Additionally, we use the two schemes for the transport of passive tracers in a dynamical core and compare our results with a current spectral element tracer transport advection used by the High-Order Method Modeling Environment.

Keywords

1. D. L. Williamson, The evolution of dynamical cores for global atmospheric models, Journal of the Meteorological Society of Japan, vol. 85, pp. 241-269, 2007.10.2151/jmsj.85B.241Search in Google Scholar

2. J. Dennis, J. Edwards, K. Evans, O. Guba, P. Lauritzen, A. Mirin, A. St-Cyr, M. Taylor, and P. Worley, CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model, International Journal of High Performance Computing Applications, vol. 26, no. 1, pp. 74-89, 2012.10.1177/1094342011428142Search in Google Scholar

3. M. Taylor, J. Edwards, S. Thomas, and R. Nair, A mass and energy conserving spectral element atmopsheric dynamical core on the cubed-sphere, Journal of Physics: Conference Series, vol. 78, 2007.10.1088/1742-6596/78/1/012074Search in Google Scholar

4. F. X. Giraldo, Lagrange-Galerkin methods on spherical geodesic grids: the shallow water equations, Journal of Computational Physics, vol. 160, pp. 336-368, 2000.10.1006/jcph.2000.6469Search in Google Scholar

5. R. D. Nair, S. J. Thomas, and R. D. Loft, A discontinuous Galerkin global shallow water model, Monthly Weather Review, vol. 133, pp. 876 888, 2005.10.1175/MWR2903.1Search in Google Scholar

6. J. M. Dennis, A. Fournier, W. F. Spotz, A. St-Cyr, M. A. Taylor, S. J. Thomas, and H. M. Tufo, High resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core, International Journal of High Performance Computing Applications, vol. 19, pp. 225-235, 2005.10.1177/1094342005056108Search in Google Scholar

7. R. Sadourny, Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Monthly Weather Review, vol. 100, pp. 136-144, 1972.10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2Search in Google Scholar

8. O. Guba, M. A. Taylor, and A. St-Cyr, Optimization-based limiters for the spectral element method, Journal of Computational Physics, vol. 267, pp. 176-195, 2014.10.1016/j.jcp.2014.02.029Search in Google Scholar

9. M. Zerroukat and T. Allen, A three-dimensional monotone and conservative semi-Lagrangian scheme (SLICE-3D) for transport problems, Quarterly Journal of the Royal Meteorological Society, vol. 138, pp. 1640-1651, 2012.Search in Google Scholar

10. R. D. Nair, J. S. Scroggs, and F. H. M. Semazzi, E_cient conservative global transport schemes for climate and atmospheric chemistry models, Monthly Weather Review, vol. 130, no. 8, pp. 2059-2073, 2002.Search in Google Scholar

11. P. Bochev, D. Ridzal, and K. Peterson, Optimization-based remap and transport: A divide and conquer strategy for feature-preserving discretizations, Journal of Computational Physics, vol. 257, pp. 1113-1139, 2014.Search in Google Scholar

12. C. Erath and R. D. Nair, A conservative multi-tracer transport scheme for spectral-element spherical grids, Journal of Computational Physics, vol. 256, no. C, pp. 118-134, 2014.10.1016/j.jcp.2013.08.050Search in Google Scholar

13. C. Erath, P. H. Lauritzen, J. H. Garcia, and H. M. Tufo, Integrating a scalable and efficient semi-Lagrangian multi-tracer transport scheme in HOMME, Procedia Computer Science, vol. 9, pp. 994-1003, 2012.10.1016/j.procs.2012.04.106Search in Google Scholar

14. C. G. Chen, F. Xiao, X. L. Li, and Y. Yang, A multi-moment transport model on cubed-sphere grid, International Journal for Numerical Methods in Fluids, vol. 67, no. 12, pp. 1993-2014, 2011.Search in Google Scholar

15. S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, vol. 31, pp. 335 362, 1979.10.1016/0021-9991(79)90051-2Search in Google Scholar

16. C. Chen and F. Xiao, Shallow water model on cubed-sphere by multi-moment finite volume method, Journal of Computational Physics, vol. 227, pp. 5019-5044, 2008.Search in Google Scholar

17. D. R. Durran, Numerical Methods for Fluid Dynamics with Applications to Geophysics. Springer, 2010.10.1007/978-1-4419-6412-0Search in Google Scholar

18. P. H. Lauritzen, R. D. Nair, and P. A. Ullrich, A conservative semi Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid, Journal of Computational Physics, vol. 229, no. 5, pp. 1401 1424, 2010.Search in Google Scholar

19. J. K. Dukowicz and J. R. Baumgardner, Incremental Remapping as a Transport/Advection Algorithm, Journal of Computational Physics, vol. 160, pp. 318-335, 2000.10.1006/jcph.2000.6465Search in Google Scholar

20. J. K. Dukowicz, Conservative rezoning (remapping) for general quadrilateral meshes, Journal of Computational Physics, vol. 54, pp. 411-424, 1984.10.1016/0021-9991(84)90125-6Search in Google Scholar

21. J. K. Dukowicz and J. Kodis, Accurate conservative remapping (rezoning) for arbitrary lagrangian-eulerian computations, SIAM Journal on Scientific and Statistical Computing, vol. 8, no. 3, pp. 305-321, 1987.10.1137/0908037Search in Google Scholar

22. P. A. Ullrich, P. H. Lauritzen, and C. Jablonowski, Geometrically Exact Conservative Remapping (GECoRe): Regular latitude-longitude and cubed-sphere grids, Monthly Weather Review, vol. 137, pp. 1721-1741, 2009.Search in Google Scholar

23. C. Erath, P. Lauritzen, and H. Tufo, On Mass Conservation in High-Order High-Resolution Rigorous Remapping Schemes on the Sphere, Monthly Weather Review, vol. 141, no. 6, pp. 2128-2133, 2013.Search in Google Scholar

24. T. J. Barth and D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, 27th Aerospace sciences meeting, vol. 89, no. 89-0366, 1989.10.2514/6.1989-366Search in Google Scholar

25. L. M. Harris, P. H. Lauritzen, and R. Mittal, A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid, Journal of Computational Physics, vol. 230, no. 4, pp. 1215-1237, 2011.Search in Google Scholar

26. R. D. Nair and P. H. Lauritzen, A class of deformational ow test cases for linear transport problems on the sphere, Journal of Computational Physics, vol. 229, p. 8868, 2010.10.1016/j.jcp.2010.08.014Search in Google Scholar

27. J. L. McGregor, Economical Determination of Departure Points for Semi-Lagrangian Models, Monthly Weather Review, vol. 121, no. 6, pp. 221-230, 1993.10.1175/1520-0493(1993)121<0221:EDODPF>2.0.CO;2Search in Google Scholar

28. R. D. Nair, J. S. Scroggs, and F. H. M. Semazzi, A forward-trajectory global semi-lagrangian transport scheme, Journal of Computational Physics, vol. 190, pp. 275-294, 2003.10.1016/S0021-9991(03)00274-2Search in Google Scholar

29. S.-J. Lin, A vertically lagrangian finite-volume dynamical core for global models, Monthly Weather Review, vol. 132, pp. 2293-2397, 2004.Search in Google Scholar

30. C. Jablonowski and D. L. Williamson, A baroclinic instability test case for atmospheric model dynamical cores, Quarterly Journal of the Royal Meteorological Society, vol. 132, pp. 2943-2975, 2006.Search in Google Scholar

31. S.-J. Lin and R. B. Rood, Multidimensional flux-form semi-Lagrangian transport schemes, Monthly Weather Review, vol. 124, no. 9, pp. 2046 2070, 1996.Search in Google Scholar

32. C. Schär and P. K. Smolarkiewicz, A synchronous and iterative flux correction formalism for coupled transport equations, Journal of Computational Physics, vol. 128, pp. 101-120, 1996.10.1006/jcph.1996.0198Search in Google Scholar

33. E. S. Gross, L. Bonaventura, and G. Rosatti, Consistency with continuity in conservative advection schemes for free-surface models, International Journal for Numerical Methods in Fluids, vol. 38, pp. 307-327, 2002.10.1002/fld.222Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo