Open Access

Alterations in intestinal and liver histomorphology and basal hematological and biochemical parameters in relation to different sources of dietary copper in adult rats


Cite

Aigner E., Strasser M., Haufe H., Sonnweber T., Hohla F., Stadlmayr A., Solioz M., Tilg H., Patsch W., Weiss G., Stickel F., Datz C., (2010). Arole for low hepatic copper concentrations in nonalcoholic fatty liver disease. Am. J. Gastroenterol., 105: 1978-1985.Search in Google Scholar

Allen K.G.D., Klevay L.M. (1978). Copper deficiency and cholesterol metabolism in the rat. Atherosclerosis, 31: 259-271.Search in Google Scholar

Andersen O. (2004). Chemical and biological considerations in the treatment of metal intoxications by chelating agents. Mini. Rev. Med. Chem., 4: 1-21.Search in Google Scholar

Apgar G.A., Kornegay E.T. (1996). Mineral balance of finishing pigs fed copper sulfate oracopper-lysine complex at growth-stimulating levels. J. Anim. Sci. 74:1594-1600.Search in Google Scholar

Arakeri G., Brennan P.A. (2013). Dietary copper: Anovel predisposing factor for oral submucous fibrosis? Med. Hypotheses, 80: 241-243.Search in Google Scholar

Ashmead H.D., Graff D.J., Ashmead H.H. (1985). Intestinal absorption of metal ions and chelates. Charles C. Thomas, Springfield, IL., pp. 118-125.Search in Google Scholar

Bao Y.M., Choct M., Iji P.A., Bruerton K. (2007). Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion, and accumulation in tissues. J. Appl. Poultry Res. 16: 448-455.Search in Google Scholar

Brewer G.J. (2010). Copper toxicity in the general population. Clin. Neurophysiol., 121: 459-460. DOI: 10.1016/j.clinph.2009.12.015.10.1016/j.clinph.2009.12.01520071223Search in Google Scholar

Chiou P.W.S., Chen C.L., Chen K.L., Wu C.P. (1999). Effect of high dietary copper on the morphology of gastro-intestinal tract in broiler chickens. Asian Austral. J. Anim. Sci., 12: 548-553. DOI: http://dx.doi.org/10.5713/ajas.1999.548.10.5713/ajas.1999.548Search in Google Scholar

Cohen J.A., Kaplan M.M. (1975). Abstract of SGOT/SGPTratio in liver disease. Gastroenterol., 43, A-13/813.Search in Google Scholar

Ding X., Xie H., Kang Y.J. (2011). The significance of copper chelators in clinical and experimental application. J. Nutr. Biochem., 22: 301-310.Search in Google Scholar

Dobrowolski P., Tomaszewska E., Kurlak P., Pierzynowski S.G. (2016). Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats. Exp. Biol. Med., 241: 14-24.Search in Google Scholar

Dobryszczycka W., Owczarek H. (1981). Effects of lead, copper, and zinc on the rat’s lactate dehydrogenase in vivo and in vitro. Arch. Toxicol., 48: 21-27.Search in Google Scholar

Eckert G.E., Greene L.W., Carstens G.E., Ramsey W.S. (1999). Copper status of ewes fed increasing amounts of copper from copper sulfate or copper proteinate. J Anim Sci. 77: 244-249.Search in Google Scholar

Fields M., Ferretti R.J., Reiser S., Smith Jr. J.C. (1984). The severity of copper deficiency in rats is determined by the type of dietary carbohydrate. Exp. Biol. Med., 175: 530-537.Search in Google Scholar

Fry R.S., Ashwell M.S., Lloyd K.E., O'Nan A.T., Flowers W.L., Stewart K.R., Spears J.W. (2012). Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress, and m RNAexpression of hepatic copper regulatory proteins in weanling pigs. J. Anim. Sci., 90: 3112-3119. DOI:10.2527/jas.2011-4403.10.2527/jas.2011-440322585802Search in Google Scholar

Fuentealba I.C., Mullins J.E., Aburto E.M., Lau J.C., Cherian G.M. (2000). Effect of age and sex on liver damage due to excess dietary copper in Fischer 344 rats. J. Toxicol. Clin. Toxicol. 7: 709-717.Search in Google Scholar

Han X.Y., Du W.L., Huang Q.Ch., Xu Z.R., Wang Y.Z. (2012). Changes in small intestinal morphology and digestive enzyme activity with oral administration of copper-loaded chitosan nanoparticles in rats. Biol. Trace Elem. Res., 145: 355-360.Search in Google Scholar

Hebert C. (1993). NTPtechnical report on the toxicity studies of cupric sulfate (CAS No. 7758-99-8) administered in drinking water and feed to F344/Nrats and B6C3F1 mice. Toxic Rep Ser.29: 1-D3.Search in Google Scholar

Kisielinski K., Willis S., Prescher A., Klosterhalfen B., Schumpelick V. (2002). Asimple new method to calculate small intestine absorptive surface in the rat. Clin. Exp. Med., 2: 131-135.Search in Google Scholar

Klevay L.M., Inman L., Johnson L.K., Lawler M., Mahalko J.R., Milne D.B., Lukaski H.C., Bolonchuk W., Sandsteadet H.H. (1984). Increased cholesterol in plasma inayoung man during experimental copper depletion. Metabolism, 33: 1112-1118.Search in Google Scholar

Kwiecień M., Winiarska- Mieczan A., Valverde Piedra J.L., Bujanowicz - Haraś B., Chałabis - Mazurek A. (2015 a). Effects of copper glycine chelate on liver and faecal mineral concentrations, and blood parameters in broilers. Agr. Food Sci. Finland, 24: 92-103.10.23986/afsci.49511Search in Google Scholar

Kwiecień M., Samolińska W., Bujanowicz - Haraś B. (2015 b). Effects of iron glycine chelate on growth, carcass characteristic, liver mineral concentrations and haematological and biochemical blood parameters in broilers. J. Anim. Physiol. An. N., 99, 6: 1184-1196. DOI: 10.1111/ jpn.12322.10.1111/jpn.1232225865671Search in Google Scholar

Kwiecień M., Winiarska - Mieczan A., Milczarek A., Klebaniuk R. (2016 a). Biological response of broiler chickens to decreasing dietary inclusion levels of zinc glycine chelate. Biol. Trace Elem. Res., DOI: 10.1007/s12011-016-0743-y.10.1007/s12011-016-0743-y27234252Search in Google Scholar

Kwiecień M., Winiarska - Mieczan A., Milczarek A., Tomaszewska E., Matras J. (2016 b). Effects of zinc glycine chelate on growth performance, carcass traits and bone quality of broiler chicken. Livest. Sci., DOI; 10.1016/j.livsci.2016.07.005.10.1016/j.livsci.2016.07.005Search in Google Scholar

Linder M.C., Hazegh - Azam M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 63: 797-811.Search in Google Scholar

Makarski B. (2002). The influence of Cu-lysine chelat andaphytase on biological reaction of turkeys (in Polish). Rozprawy Naukowe AR Lublin. 256 pp.Search in Google Scholar

Makarski B., Kwiecień M., Zadura A. (2009 a). The influence of copper in the form ofalysine chelate and lactic acid on biological reaction of turkeys. I. Hematological and biochemical indices of blood and production effects of turkeys. In: Elements, the environment and human life. Pasternak K. (ed.), pp. 184-192.Search in Google Scholar

Makarski B., Kwiecień M., Zadura A. (2009 b). The influence of copper in the form ofalysine chelate and lactic acid on biological reaction of turkeys. II: The shares of mineral elements in the tissue and the contents of the large intestine in turkeys. In: Elements, the environment and human life. Pasternak K. (ed.), pp. 193-198.Search in Google Scholar

Männer K., Simon O., Schlegel P. (2006). Effects of different iron, manganese, zinc and copper sources (sulfates, chelates, glycinates) on their bioavailability in early weaned piglets. In: Tagung Schweine - und Geflügelernährung, M. Rodehutscord. 9th ed. Universität Halle-Wittenberg, Germany, 2006.Search in Google Scholar

Megahed M.A., Hassanin K.M.A., Youssef I.M.I., Elfghi A.B.A, Amin K.A. (2014). Alterations in plasma lipids, glutathione and homocysteine in relation to dietary copper in rats. J. Invest. Biochem., 3: 21-25. DOI: 10.5455/jib.20130716075753.10.5455/jib.20130716075753Search in Google Scholar

Millsa C.F., Dalgarnoa A.C., Wenhama G. (1976). Biochemical and pathological changes in tissues of Friesian cattle during the experimental induction of copper deficiency. Br. J. Nutr., 35: 309-331.Search in Google Scholar

National Research Council (NRC) (2005). Mineral Tolerance of Animals. Committee on Minerals and Toxic Substances in Diets and Water for Animals. Natl. Acad. Press, Council http://www.nap.edu/catalog/11309.html, 147 pp.Search in Google Scholar

Peňa M.M.O., Lee J., Thiele D.J. (1999). Adelicate balance: homeostatic control of copper uptake and distribution. J. Nutr., 1129: 1251-1260.Search in Google Scholar

Reyes J.G. (1996). Zinc transport in mammalian cells. Am. J. Physiol., 270: C401-C410.Search in Google Scholar

Rinaldi A.C. (2000). Meeting report - copper research at the top. Biometals, 13: 9-13.Search in Google Scholar

Roberts E.A., Michael L. (2008). Schilsky diagnosis and treatment of Wilson disease: An update. Hepatology, 47: 2089-2111.Search in Google Scholar

Salama R., Nassar A., Nafady A., Mohamed H. (2007). Anovel therapeutic drug (copper nicotinic acid complex) for non-alcoholic fatty liver. Liver Int., 27: 454-64.Search in Google Scholar

Świątkiewicz S., Koreleski J., Hong D.Q. (2001). The bioavailability of zinc from inorganic and organic sources in broiler chickens as affected by addition of phytase. J. Anim. Feed Sci., 10: 317-328.Search in Google Scholar

Tomaszewska E., Dobrowolski P., Kwiecień M., Burmańczuk N., Badzian B., Szymańczyk S., Kurlak P. (2014). Alterations of liver histomorphology in relation to copper supplementation in inorganic and organic form in growing rats. Bull. Vet. Inst. Pulawy, 58: 479-486.Search in Google Scholar

Tomaszewska E., Dobrowolski P., Kwiecień M. (2015). Intestinal alterations, basal hematology and biochemical parameters in adolescent rats fed different sources of dietary copper. Biol. Trace Elem. Res., DOI: 10.1007/s12011-015-0522-1.10.1007/s12011-015-0522-1483199326432448Search in Google Scholar

Wang Z., Cerrate S., Coto C., Yan F., Waldroup P.W. (2007). Evaluation of MINTREXcopper asasource of copper in broiler diet. Inter. J. Poultry Sci., 6: 308-313.Search in Google Scholar

Xia M.S., Hu C.H., Xu Z. R. (2004). Effects of copper-bearing montmorillonite on growth performance, digestive enzyme activities, and intestinal microflora and morphology of male broilers. Poultry Sci., 83: 1868-1875. Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine