Open Access

2. Beneficial Aspects of Inulin Supplementation as a Fructooligosaccharide Prebiotic in Monogastric Animal Nutrition – A Review


Cite

Ammerman E., Quarles C., Twining P.V. (1988). Broiler response to the addition of dietary fructooligosaccharides. Poultry Sci., 67, p. 46.Search in Google Scholar

Awad W.A., Ghareeb K., Paßlack N., Zentek J. (2013). Dietary inulin alters the intestinal absorptive and barrier function of piglet intestine after weaning. Res. Vet. Sci., 95: 249-254.Search in Google Scholar

Bailey J.S., Blankenship L.C., Cox N.A. (1991). Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poultry Sci., 70: 2433-2438.Search in Google Scholar

Bednarczyk M., Urbanowski M., Gulewicz P., Kasperczyk K., Maiorano G., Szwaczkowski T. (2011). Field and in vitro study on prebiotic effect of raffinose family oligosaccharides in chickens. Bull. Vet. Inst. Pulawy, 55: 465-469.Search in Google Scholar

Beloshapka A.N., Duclos L.M., Vester Boler B.M., Swanson K.S. (2012). Effects of inulin or yeast cell-wall extract on nutrient digestibility, fecal fermentative end-product concentrations, and blood metabolite concentrations in adult dogs fed raw meat-based diets. Am. J.Vet. Res. 73: 1016-1023.Search in Google Scholar

Beloshapka A.N., Dowd S.E., Suchodolski J.S., Steiner J.M., Duclos L., Swan - son K.S. (2013). Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiol. Ecol., 84: 532-541.Search in Google Scholar

Berg R.D. (1985). Indigenous intestinal microflora and the host immune response. EOS J. Immunol. Immunopharmacol., 4: 161-168.Search in Google Scholar

Chen Y.C., Nakthong C., Chen T.C. (2005). Improvement of laying hen performance by dietary prebiotic chicory oligofructose and inulin. Int. J. Poultry Sci., 4: 103-108.Search in Google Scholar

Coudray C., Feillet- Coudray C., Gueux E., Mazur A., Rayssiguier Y. (2006). Dietary inulin intake and age can affect intestinal absorption of zinc and copper in rats. J. Nutr., 136: 117-122.Search in Google Scholar

Dankowiakowska A., Kozłowska I., Bednarczyk M. (2013). Probiotics, prebiotics and synbiotics in poultry - mode of action, limitation, and achievements. J. Cent. Eur. Agric., 14: 467-478.Search in Google Scholar

Estrada A., Drew M.D., Van Kessel A. (2001). Effect of the dietary supplementation of fructooligosaccharides and Bifidobacterium longum to early-weaned pigs on performance and fecal bacterial populations. Can. J. Anim. Sci., 81: 141-148.Search in Google Scholar

Flickinger E.A., Van Loo J., Fahey Jr G.C. (2003 a). Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: Areview. Cr. Rev. Food Sci. Nutri., 43: 19-60.10.1080/1040869039082644612587985Search in Google Scholar

Flickinger E.A., Schreijen E.M.W.C., Patil A.R., Hussein H.S., Grieshop C.M., Merchen N.R., Fahey Jr G.C. (2003 b). Nutrient digestibilities, microbial populations, and protein catabolites as affected by fructan supplementation of dog diets. J. Anim. Sci., 81: 2008-2018.10.2527/2003.8182008x12926783Search in Google Scholar

Gibson G.R., Pereira D.I.A. (2002). Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Cr. Rev. Bioch. Mol. Biol., 37: 259-281.Search in Google Scholar

Grela E.R., Pietrzak K., Sobolewska S., Witkowski P. (2013). Effect of inulin and garlic supplementation in pig diets. Ann. Anim. Sci., 13: 63-71.Search in Google Scholar

Grela E.R., Sobolewska S., Kowalczuk- Vasilev E., Krasucki W. (2014 a). Effect of dietary inulin source on piglet performance, immunoglobulin concentration, and plasma lipid profile. Bull. Vet. Inst. Pulawy., 58: 453-458.10.2478/bvip-2014-0069Search in Google Scholar

Grela E.R., Sobolewska S., Roziński T. (2014 b). Effect of inulin extracts or inulin-containing plant supplement on blood lipid indices and fatty acid profile in fattener tissues. Pol. J. Vet. Sci., 17: 93-98.10.2478/pjvs-2014-001224724475Search in Google Scholar

Halas D., Hansen C.F., Hampson D.J., Kim J.C., Mullan B.P., Wilson R.H., Plus - ke J.R. (2010). Effects of benzoic acid and inulin on ammonia-nitrogen excretion, plasma urea levels, and the p Hin faeces and urine of weaner pigs. Livestock Sci., 134: 243-245.Search in Google Scholar

Hansen C.F., Phillips N.D., La T., Hernández A., Mansfield J., Kim J.C., Mul- lan B.P., Hampson D.J., Pluske J.R. (2010). Diets containing inulin but not lupins help to prevent swine dysentery in experimentally challenged pigs. J. Anim. Sci., 88: 3327-3336.Search in Google Scholar

Hansen C.F., Hernández A., Mansfield J., HidalgoÁ., La T., Phillips N.D., Hamp - son D.J., Pluske J.R. (2012). Ahigh dietary concentration of inulin is necessary to reduce the incidence of swine dysentery. Brit. J. Nutr., 106: 1506-1513.Search in Google Scholar

Hesta M., Debraekeleer J., Janssens G.P.J., De Wilde R. (2006). Effects of prebiotics in dog and cat nutrition: Areview. Trends in dietary carbohydrates research. Landlow M.V. ed. Nova Science Publishers, pp. 179-219.Search in Google Scholar

Hussein H.S., Flickinger E.A., Fahey Jr G.C. (1999). Pet food applications of inulin and oligofructose. J. Nutr., 129: 1454-1456.Search in Google Scholar

Janczyk P., Pieper R., Smidt H., Souffrant W.B. (2010). Effect of alginate and inulin on intestinal microbial ecology of weanling pigs reared under different husbandry conditions. FEMS Microbiol. Ecol., 72: 132-142.Search in Google Scholar

Kelly G. (2008). Inulin-type prebiotics -areview: part 1. Altern. Med. Rev., 13: 315-329.Search in Google Scholar

Kelly- Quagliana K.A., Buddington R.K., Van Loo J., Nelson P.D. (1998). Immunomodulation by oligofructose and inulin. Faseb J., 12, p. 904.Search in Google Scholar

Kim G.B., Seo Y.M., Kim C.H., Paik I.K. (2011). Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poultry Sci., 90: 75-82.Search in Google Scholar

Kjos N.P., Overland M., Fauske A.K., Sorum H. (2010). Feeding chicory inulin to entire male pigs during the last period before slaughter reduces skatole in digesta and backfat. Livest. Sci., 134: 143-145.Search in Google Scholar

Kleessen B., Blaut M. (2005). Modulation of gut mucosal biofilms. Br. J. Nutr., 93: 35-40.Search in Google Scholar

Kolida S., Gibson G.R. (2007). Prebiotic capacity of inulin-type fructans. J. Nutr., 137: 2503-2506.Search in Google Scholar

Lallès J.P., Bosi P., Janczyk P., Koopmans S.J., Torrallardona D. (2009). Impact of bioactive substances on the gastrointestinal tract and performance of weaned piglets:areview. Animal, 3: 1625-1643.Search in Google Scholar

Loh T.C., Wang W.S., Foo H.L. (2010). Effects of dietary protein and inulin on growth and nitrogen balance in growing pigs. J. Appl. Anim. Res., 38: 55-59.Search in Google Scholar

Lomax A.R., Calder P.C. (2009). Prebiotics, immune function, infection and inflammation:areview of the evidence. Br. J. Nutr., 101: 633-658.Search in Google Scholar

Loo J.V. (2007). How chicory fructans contribute to zootechnical performance and well-being in livestock and companion animals. J. Nutr., 137: 2594-2597.Search in Google Scholar

Macfarlane G.T., Gibson G.R. (1997). Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine. Gastrointest. Microbiol., pp. 269-318.10.1007/978-1-4615-4111-0_9Search in Google Scholar

Metzler- Zebeli B.U., Ratriyanto A., Jezierny D., Sauer N., Eklund M., Mosen- thin R. (2009). Effects of betaine, organic acids and inulin as single feed additives or in combination on bacterial populations in the gastrointestinal tract of weaned pigs. Arch. Anim. Nutr., 63: 427-441.Search in Google Scholar

Middelbos I.S., Fastinger N.D., Fahey Jr G.C. (2007). Evaluation of fermentable oligosaccharides in diets fed to dogs in comparison to fiber standards. J. Anim. Sci., 85: 3033-3044.Search in Google Scholar

Milewski S., Wójcik R., Małaczewska J., Trapkowska S., Siwicki A.K. (2007). Effect ofß-1,3/1,6-D-glucan on meat performance and non-specific humoral defense mechanisms in lambs. Med. Weter., 63: 360-363.Search in Google Scholar

Nabizadeh A. (2012). The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance. J. Anim. Feed Sci., 21: 725-734.Search in Google Scholar

Niness K.R. (1999). Inulin and oligofructose: What are they? J. Nutr., 129: 1402-1406.Search in Google Scholar

O’Shea C.J., Sweeney T., Bahar B., Ryan M.T., Thornton K., O' Doherty J.V. (2012). Indices of gastrointestinal fermentation and manure emissions of growing-finishing pigs as influenced through singular or combined consumption of Lactobacillus plantarum and inulin. J. Anim. Sci., 90: 3848-3857.Search in Google Scholar

Patterson J.A., Burkholder K.M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Sci., 82: 627-631.Search in Google Scholar

Petkevičius S., Bach Knudsen K.E., Murrell K.D., Wachmann H. (2003). The effect of inulin and sugar beet fibre on Oesophagostomum dentatum infection in pigs. Parasitology, 127: 61-68.Search in Google Scholar

Petkevičius S., Thomsen L.E., Bach Knudsen K.E., Murrell K.D., Roepstorff A., Boes J. (2007). The effect of inulin on new and on patent infections of Trichuris suis in growing pigs. Parasitology, 134: 121-127.Search in Google Scholar

Pinna C., Biagi G. (2014). The utilisation of prebiotics and synbiotics in dogs. Ital. J. Anim. Sci. 13: 169-178.Search in Google Scholar

Propst E.L., Flickinger E.A., Bauer L.L., Merchen N.R., Fahey Jr G.C. (2003). Adoseresponse experiment evaluating the effects of oligofructose and inulin on nutrient digestibility, stool quality, and fecal protein catabolites in healthy adult dogs. J. Anim. Sci., 81: 3057-3066.Search in Google Scholar

Rebolé A., Ortiz L.T., Rodríguez M.L., Alzueta C., Trevino J., Velasco S. (2010). Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fedawheat- and barley-based diet. Poultry Sci., 89: 276-286.Search in Google Scholar

Rehman H., Rosenkranz C., Böhm J., Zentek J. (2007). Dietary inulin affects the morphology but not the sodium-dependent glucose and glutamine transport in the jejunum of broilers. Poultry Sci., 86: 118-122.Search in Google Scholar

Reilly P., Sweeney T., Smith A.G., Pierce K.M., Gahan D.A., Callan J.J., O' Doher- ty J.V. (2010). The effects of cereal-derived beta-glucans and enzyme supplementation on intestinal microbiota, nutrient digestibility and mineral metabolism in pigs. Livest. Sci., 133: 144-147.Search in Google Scholar

Roberfroid M.B. (2007). Inulin-type fructans: functional food ingredients. J. Nutr., 137: 2493-2502.Search in Google Scholar

Roberfroid M.B, Van Loo J.A.E., Gibson G.R. (1998). The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr., 128: 11-19.Search in Google Scholar

Roller M., Rechkemmer G., Watzl B. (2004). Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats. J. Nutr., 134: 153-156.Search in Google Scholar

Rossi M., Corradini C., Amaretti A., Nicolini M., Pompei A., Zanoni S., Mat- teuzzi D. (2005). Fermentation of fructooligosaccharides and inulin by Bifidobacteria:acomparative study of pure and fecal cultures. Appl. Environ. Microbiol., 71: 6150-6158.Search in Google Scholar

Russell T.J. (1998). The effect of natural source of non-digestible oligosaccharides on the fecal microflora of the dog and effects on digestion. Friskies R & D Center, St. Joseph, MO.Search in Google Scholar

Samanta A.K., Jayapal N., Senani S., Kolte A.P., Sridhar M. (2013). Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora. Braz. J. Microbiol., 44: 1-14.Search in Google Scholar

Schley P.D., Field C.J. (2002). The immune-enhancing effects of dietary fibres and prebiotics. Brit. J. Nutr., 87: 221-230.Search in Google Scholar

Scholz-Ahrens K.E., Schrezenmeir J. (2007). Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J. Nutr., 137: 2513-2523.Search in Google Scholar

Sevane N., Bialade F., Velasco S., Rebolé A., Rodríguez M.L., Ortiz L.T., Ca - ñón J., Dunner S. (2014). Dietary inulin supplementation modifies significantly the liver transcriptomic profile of broiler chickens. PLo S ONE 9(6): e98942.Search in Google Scholar

Shim S.B., Williams I.H., Verstegen M.W.A. (2005). Effects of dietary fructo-oligosaccharidases on growth, villous height and disaccharides activity of the small intestine, p H, VFAand ammonia concentration in the large intestine of weaned pigs. Acta. Agric. Scand., Section A-Anim. Sci., 55: 91-97.Search in Google Scholar

Skowronek M., Fiedurek J. (2003). Insulin and insulinases - properties, applications and possible future use (in Polish). Przem. Spoż., 3: 18-20.Search in Google Scholar

Sobolewska S., Grela E.R. (2013). Effect of inulin extraction method and level in growing-finishing pig diets on performance, carcass traits and nutrients digestibility. Annales Universitatis Mariae Curie-Skłodowska Lublin - Polonia, 31: 56-64.Search in Google Scholar

Sobolewska S., Samolińska W., Skomiał J., Grela E. R. (2014). Effect of inulin content and extract type on short-chain fatty acid concentration in the large intestine and lipid parameters in fattener blood. Vet. Med.-Sci. Pract., 70: 296-301.Search in Google Scholar

Strompfová V., Lauková A., Cilik D. (2013). Synbiotic administration of canine-derived strain Lactobacillus fermentum CCM 7421 and inulin to healthy dogs. Canadian J. Microbiol., 59: 347-352.Search in Google Scholar

Swanson K.S., Grieshop C.M., Flickinger E.A., Bauer L.L., Healy H.P., Daw- son K.A., Merchen N.R., Fahey Jr G.C. (2002). Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs. J. Nutr., 132: 980-989.Search in Google Scholar

Szymeczko R., Głowińska B., Burlikowska K., Piotrowska A., Bogusławska- - Tryk M., Kozłowska I., Brudnicki A., Pietruszyńska D. (2013). Characteristics of selected peripheral blood parameters in polar fox (Alopex lagopus L.) fed diets with inulin. Folia Biol.-Krakow, 61: 113-118.Search in Google Scholar

Tako E., Glahn R.P., Welch R.M., Lei X., Yasuda K., Mille D.D. (2008). Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Brit. J. Nutr., 99: 472-480.Search in Google Scholar

Topping D.L. (1996). Short-chain fatty acids produced by intestinal bacteria. Asia Pacific J. Clin. Nutr., 5: 15-19.Search in Google Scholar

Trautwein E.A., Rieckhoff D., Erbersdobler H.F. (1998). Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters. J. Nutr., 128: 1937-1943. Search in Google Scholar

van de Wiele T., Boon N., Possemiers S., Jacobs H., Verstraete W. (2007). Inulintype fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J. Appl. Microbiol., 102: 452-460.Search in Google Scholar

Verdonk J.M.A.J., Shim S.B.,van Leeuwen P., Verstegen M.W.A. (2005). Application of inulin-type fructans in animal feed and pet food. Brit. J. Nutr., 93: 125-138.Search in Google Scholar

Watzl B., Girrbach S., Roller M. (2005). Inulin, oligofructose and immunomodulation. Brit. J. Nutr., 93: 49-55.Search in Google Scholar

Wegener H.C. (2003). Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol., 6: 439-445.Search in Google Scholar

Wesoły R., Weiler U. (2012). Nutritional influences on skatole formation and skatole metabolism in the pig. Animals, 2: 221-242.Search in Google Scholar

Windisch W., Schedle K., Plitzner C., Kroismayr A. (2008). Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci., 86: 140-148.Search in Google Scholar

Wójcik R., Małaczewska J., Trapkowska S., Siwicki A.K. (2007). Influence ofß-1,3/1,6-D- glucan on non-specific cellular defence mechanisms in lambs. Med. Weter., 63: 84-86.Search in Google Scholar

Xu Z.R., Hu C.H., Xia M.S., Zhan X.A., Wang M.Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Sci., 82: 1030-1036.Search in Google Scholar

Yasuda K., Roneker K.R., Miller D.D., Welch R.M., Lei X.G. (2006). Supplemental dietary inulin affects the bioavailability of iron in corn and soybean meal to young pigs. J. Nutr., 136: 3033-3038.Search in Google Scholar

Yasuda K., Maiorano R., Welch R.M., Miller D.D., Lei X.G. (2007). Cecum is the major degradation site of ingested inulin in young pigs. J. Nutr., 137: 2399-2404.Search in Google Scholar

Yusrizal Chen T.C. (2003 a). Effect of adding chicory fructans in feed on broiler growth performance, serum cholesterol and intestinal length. Int. J. Poultry Sci., 2: 214-219.10.3923/ijps.2003.214.219Search in Google Scholar

Yusrizal Chen T.C. (2003 b). Effect of adding chicory fructans in feed on fecal and intestinal microflora and excreta volatile ammonia. Int. J. Poultry Sci., 2: 188-194.10.3923/ijps.2003.188.194Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine