Open Access

Resin-Based Composite and LCU-related Factors Affecting the Degree of Cure. A Literature Review: Part 2. Light Curing Units & Related Factors


Cite

1. Santini A. Current status of visible light activation units and the curing of light- activated resin-based composite materials. Dent Update. 2010;37,214-6,218-20,223-7.10.12968/denu.2010.37.4.214Search in Google Scholar

2. Rueggeberg FA. State-of-the-art: dental photocuring-a review. Dent Mater. 2011;27,39-52.10.1016/j.dental.2010.10.021Search in Google Scholar

3. Mills RW., Jandt KD., Ashworth SH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J. 1999;186,388-91.Search in Google Scholar

4. Pelissier B., Jacquot B., Palin WM., Shortall AC. Three generations of LED lights and clinical implications for optimizing their use. 1: from past to present. Dent Update. 2011;38,660-2,664-6,668-70.Search in Google Scholar

5. Neumann MG., Schmitt CC., Ferreira GC., Correa IC. The initiating radical yields and the efficiency of polymerisation for various dental photoinitiators excited by different light curing units. Dent Mater. 2006;22,576-84.Search in Google Scholar

6. da Silva EM., Poskus LT., Guimaraes JG., de Araujo Lima Barcellos A., Fellows CE. Influence of light polymerisation modes on degree of conversion and crosslink density of dental composites. J Mater Sci Mater Med. 2008;19,1027-32.Search in Google Scholar

7. Rahiotis C., Patsouri K., Silikas N., Kakaboura A. Curing efficiency of high-intensity light-emitting diode (LED) devices. J Oral Sci. 2010.;52,187-95.Search in Google Scholar

8. Rueggeberg F. Contemporary issues in photocuring. Compend Contin Educ Dent Suppl. 1999;S4-15.Search in Google Scholar

9. Hofmann N., Hugo B., Klaiber B. Effect of irradiation type (LED or QTH) on photo- activated composite shrinkage strain kinetics, temperature rise, and hardness. Eur J Oral Sci. 2002;110,471-9.Search in Google Scholar

10. Lindberg A., Peutzfeldt A., van Dijken JW. Curing depths of a universal hybrid and a flowable resin composite cured with quartz tungsten halogen and light-emitting diode units. Acta Odontol Scand. 2004;62,97-101.Search in Google Scholar

11. Shortall AC. How light source and product shade influence cure depth for a contemporary composite. J Oral Rehabil. 2005;32,906-11.Search in Google Scholar

12. Campregher UB., Samuel SM., Fortes CB., et al. Effectiveness of second-generation light-emitting diode (LED) light curing units. J Contemp Dent Pract. 2007;8,35-42.Search in Google Scholar

13. Mills RW., Uhl A., Blackwell GB., Jandt KD. High power light emitting diode (LED) arrays versus halogen light polymerisation of oral biomaterials: Barcol hardness, compressive strength and radiometric properties. Biomaterials. 2002;23,2955-63.Search in Google Scholar

14. Ikemura K., Ichizawa K., Yoshida M., Ito S.& Endo T. UV-VIS spectra and photoinitiation behaviors of acylphosphine oxide and bisacylphosphine oxide derivatives in unfilled, light-cured dental resins. Dent Mater J. 2008;27,765-74.Search in Google Scholar

15. Arikawa H., Takahashi H., Kanie T. & Ban S. Effect of various visible light photoinitiators on the polymerisation and color of light-activated resins. Dent Mater J. 2009;28,454-60.Search in Google Scholar

16. Ilie N., Hickel R. Can CQ be completely replaced by alternative initiators in dental adhesives? Dent Mater J. 2008;27,221-810.4012/dmj.27.221Search in Google Scholar

17. Busemann I., Lipke C., Schattenberg A., Willershausen B., Ernst CP. Shortest exposure time possible with LED curing lights. Am J Dent. 2011;24,37-44.Search in Google Scholar

18. Price RB., Fahey J., Felix CM. Knoop hardness of five composites cured with single-peak and polywave LED curing lights. Quintessence Int. 2010a;41,e181-91.Search in Google Scholar

19. Sim JS., Seol HJ., Park JK., et al. Interaction of LED light with coinitiator-containing composite resins: effect of dual peaks. J Dent. 2012;40,836-42.Search in Google Scholar

20. Alvim HH., Alecio AC., Vasconcellos WA., et al. Analysis of camphorquinone in composite resins as a function of shade. Dent Mater. 2007;23,1245-9.Search in Google Scholar

21. Czasch P.& Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investi. 2013;17,227-35.10.1007/s00784-012-0702-8Search in Google Scholar

22. Ferracane JL., Mitchem JC., Condon JR., Todd R. Wear and Marginal Breakdown of Composites with Various Degrees of Cure. Journal of Dental Research. 1997;76,1508-1516.Search in Google Scholar

23. Park YJ., Chae KH.& Rawls HR. Development of a new photoinitiation system for dental light-cure composite resins. Dent Mater. 1999;15,120-7.Search in Google Scholar

24. Moore BK., Platt JA., Borges G., Chu TM., Katsilieri I. Depth of cure of dental resin composites: ISO 4049 depth and micro-hardness of types of materials and shades. Oper Dent. 2008.;33,408-12.Search in Google Scholar

25. Borges BC., Bezerra GV., Mesquita A., et al. Effect of irradiation times on the polymerisation depth of contemporary fissure sealants with different opacities. Braz Oral Res. 2011;25,135-42.Search in Google Scholar

26. Davidson-Kaban SS., Davidson CL., Feilzer AJ., de Gee AJ., Erdilek N. The effect of curing light variations on bulk curing and wall-to-wall quality of two types and various shades of resin composites. Dent Mater. 1997;13,344-52.Search in Google Scholar

27. Knezevic A., Tarle Z., Meniga A., et al. Degree of conversion and temperature rise during polymerisation of composite resin samples with blue diodes. J Oral Rehabil. 2001;28,586-91.Search in Google Scholar

28. Santini A., Miletic V., Swift MD., Bradley M. Degree of conversion and microhardness of TPO-containing resin-based composites cured by polywave and monowave LED units. J Dent. 2012;40,577-84.Search in Google Scholar

29. Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater. 1985;1,11-4.Search in Google Scholar

30. Silikas N., Eliades G., Watts DC. Light intensity effects on resin- composite degree of conversion and shrinkage strain. Dent Mater. 2000;16,292-6.Search in Google Scholar

31. Lohbauer U., Rahiotis C., Kramer N., Petschelt A., Eliades G. The effect of different light-curing units on fatigue behavior and degree of conversion of a resin composite. Dent Mater. 2005;21,608-15.Search in Google Scholar

32. Shin DH.& Rawls HR. Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent Mater. 2009;25,1030-8.Search in Google Scholar

33. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997;105,97-116.10.1111/j.1600-0722.1997.tb00188.xSearch in Google Scholar

34. Calheiros FC., Daronch M., Rueggeberg FA., Braga RR. Degree of conversion and mechanical properties of a BisGMA: TEGDMA composite as a function of the applied radiant exposure. J Biomed Mater Res B Appl Biomater. 2008;84,503-9.Search in Google Scholar

35. Floyd CJ., Dickens SH. Network structure of Bis-GMA- and UDMA-based resin systems. Dent Mater. 2006;22,1143-9.Search in Google Scholar

36. Price RB., Mcleod ME., Felix CM. Quantifying light energy delivered to a Class I restoration. J Can Dent Assoc. 2010b;76,a23.Search in Google Scholar

37. Peutzfeldt A., Asmussen E. Hardness of restorative resins: effect of camphorquinone, amine, and inhibitor. Acta Odontol Scand. 1989;47,229-31.Search in Google Scholar

38. Kalliyana Krishnan V., Yamuna V. Effect of initiator concentration, exposure time and particle size of the filler upon the mechanical properties of a light-curing radiopaque dental composite. J Oral Rehabil. 1998;25,747-51.Search in Google Scholar

39. Rueggeberg FA., Ergle JW., Lockwood PE. Effect ofphotoinitiator level on properties of a light-cured and post-cure heated model resin system. Dent Mater. 1997;13,360-4.Search in Google Scholar

40. Yoshida K., Greener EH. Effect of photoinitiator on degree of conversion of unfilled light-cured resin. J Dent. 1994;22,296-9.Search in Google Scholar

41. Leprince JG., Hadis M., Shortall AC., et al. Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent Mater. 2011;27,157-64.Search in Google Scholar

42. Miletic V., Santini A. Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units. J Dent. 2012;40,106-13.Search in Google Scholar

43. Neumann MG., Miranda WG. jr., Schmitt CC., Rueggeberg FA., Correa IC. Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units. J Dent. 2005;33,525-32.Search in Google Scholar

44. Brandt WC., Schneider LF., Frollini E., Correr-Sobrinho L., Sinhoreti M. Effect of different photo-initiators and light curing units on degree of conversion of composites. Braz Oral Res. 2010;24,263-70.Search in Google Scholar

45. Palin WM., Senyilmaz DP., Marquis PM., Shortall AC. Cure width potential for MOD resin composite molar restorations. Dent Mate. 2008;24,1083-94.Search in Google Scholar

46. Myers ML., Caughman WF.& Rueggeberg FA. Effect of restoration composition, shade, and thickness on the cure of a photoactivated resin cement. J Prosthodont. 1994;3,149-57.Search in Google Scholar

47. Lazarchik DA., Hammond BD., Sikes CL., Looney SW., Rueggeberg FA. Hardness comparison of bulk-filled/transtooth and incremental-filled/occlusally irradiated composite resins. The Journal of Prosthetic Dentistry. 2007;98,129-140.Search in Google Scholar

48. Ogunyinka A., Palin WM., Shortall AC., Marquis PM. Photoinitiation chemistry affects light transmission and degree of conversion of curing experimental dental resin composites. Dent Mater. 2007;23,807-13.Search in Google Scholar

49. Price RB., Murphy DG., Derand T. Light energy transmission through cured resin composite and human dentin. Quintessence Int. 2000;31,659-67.Search in Google Scholar

50. Arcis RW., Lopez-Macipe A., Toledano M., et al. Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dent Mater. 2002;18,49-57.Search in Google Scholar

51. Thome T., Steagall W. Jr., Tachibana A., Braga SR., Turbino ML. Influence of the distance of the curing light source and composite shade on hardness of two composites. J Appl Oral Sci. 2007;15,486-91.Search in Google Scholar

52. Shortall AC., Palin WM., Burtscher P. Refractive index mismatch and monomer reactivity influence composite curing depth. J Dent Res. 2008;87,84-8.Search in Google Scholar

53. Caughman WF., Rueggeberg FA.& Curtis JW. Jr. Clinical guidelines for photocuring restorative resins. J Am Dent Assoc. 1995;126,1280-2,1284,1286.Search in Google Scholar

54. Guiraldo RD., Consani S., Consani RL., et al. Light energy transmission through composite influenced by material shades. Bull Tokyo Dent Coll. 2009;50,183-90.Search in Google Scholar

55. Alshali RZ., Silikas N.& Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater. 2013;29,e213-710.1016/j.dental.2013.05.011Search in Google Scholar

56. Jeong TS., Kang HS., Kim SK., et al. The effect of resin shades on microhardness, polymerisation shrinkage, and color change of dental composite resins. Dent Mater J. 2009;28,438-45.Search in Google Scholar

57. Rueggeberg FA., Caughman WF., Curtis JW. Jr.& Davis HC. Factors affecting cure at depths within light-activated resin composites. Am J Dent. 1993;6,91-5.Search in Google Scholar

58. Pilo R., Oelgiesser D.& Cardash HS. A survey of output intensity and potential for depth of cure among light-curing units in clinical use. J Dent. 1999;27,235-41.Search in Google Scholar

59. Yap AU. Effectiveness of polymerisation in composite restoratives claiming bulk placement: impact of cavity depth and exposure time. Oper Dent. 2000;25,113-20.Search in Google Scholar

60. Harrington E.& Wilson HJ. Depth of cure of radiation-activated materials-effect of mould material and cavity size. J Dent. 1993;21,305-11.10.1016/0300-5712(93)90114-6Search in Google Scholar

61. Hadis MA., Shortall AC.& Palin WM. Specimen aspect ratio and light transmission in photoactive dental resins. Dent Mater. 2012;28,1154-61.Search in Google Scholar

62. Stansbury JW. Curing dental resins and composites by photopolymerisation. J Esthet Dent, 2000;12,300-8.10.1111/j.1708-8240.2000.tb00239.x14743525Search in Google Scholar

63. Unn WJ.& Bush AC. A comparison of polymerisation by light- emitting diode and halogen-based light-curing units. J Am Dent Assoc. 2002;133,335-41.10.14219/jada.archive.2002.017311934189Search in Google Scholar

64. Price RB.& Felix CA. Effect of delivering light in specific narrow bandwidths from 394 to 515nm on the micro-hardness of resin composites. Dent Mater. 2009;25,899-908.10.1016/j.dental.2009.01.09819243817Search in Google Scholar

65. Rueggeberg FA., Caughman WF.& Curtis JW. Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent. 1994a;19,26-32.Search in Google Scholar

66. Peutzfeldt A.& Asmussen E. Resin Composite Properties and Energy Density of Light Cure. Journal of Dental Research. 2005;84,659-662.10.1177/15440591050840071515972597Search in Google Scholar

67. Abate PF., Zahra VN.& Macchi RL. Effect of photopolymerisation variables on composite hardness. J Prosthet Dent. 2001;86,632-5.Search in Google Scholar

68. Lindberg A., Peutzfeldt A.& van Dijken JW. Effect of power density of curing unit, exposure duration, and light guide distance on composite depth of cure. Clin Oral Investig. 2005;9,71-6.Search in Google Scholar

69. Leloup G., Holvoet PE., Bebelman S.& Devaux J. Raman scattering determination of the depth of cure of light-activated composites: influence of different clinically relevant parameters. J Oral Rehabil. 2002;29,510-5.Search in Google Scholar

70. Ceballos L., Fuentes MV., Tafalla H., et al. Curing effectiveness of resin composites at different exposure times using LED and halogen units. Med Oral Patol Oral Cir Bucal. 2009;14,E51-6.Search in Google Scholar

71. Zhu S.& Platt J. Curing efficiency of three different curing modes at different distances for four composites. Oper Dent. 2011;36,362-71.10.2341/09-245-L21834705Search in Google Scholar

72. Leprince JG., Lamblin G., Devaux J., et al. Irradiation modes’ impact on radical entrapment in photoactive resins. J Dent Res. 2010;89,1494-8.Search in Google Scholar

73. Emami N.& Soderholm KJ. How light irradiance and curing time affect monomer conversion in light-cured resin composites. Eur J Oral Sci. 2003;111,536-42.10.1111/j.0909-8836.2003.00082.x14632692Search in Google Scholar

74. Halvorson RH., Erickson RL.& Davidson CL. Energy dependent polymerisation of resin-based composite. Dent Mater. 2002/18,463-9.Search in Google Scholar

75. Nitta K. Effect of light guide tip diameter of LED-light curing unit on polymerisation of light-cured composites. Dent Mater. 2005/21,217-23.10.1016/j.dental.2004.03.00815705428Search in Google Scholar

76. Rode KM., Kawano Y.& Turbino ML. Evaluation of curing light distance on resin composite microhardness and polymerisation. Oper Dent. 2007;32,571-8.Search in Google Scholar

77. Pires JA., Cvitko E., Denehy GE.& Swift EJ. Jr. Effects of curing tip distance on light intensity and composite resin microhardness. Quintessence Int. 1993;24,517-21.Search in Google Scholar

78. RUEGGEBERG F. A. & JORDAN D. M. Effect of light-tip distance on polymerisation of resin composite. Int J Prosthodont. 1993;6,364-70.Search in Google Scholar

79. Pianelli C., Devaux J., Bebelman S.& Leloup G. The micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins. J Biomed Mater Res. 1999;48,675-81.Search in Google Scholar

80. de Santis A., Baldi M. Photo-polymerisation of composite resins measured by micro-Raman spectroscopy. Polymer. 2004;45,3797-3804.Search in Google Scholar

81. Rueggeberg FA., Craig RG. Correlation of parameters used to estimate monomer conversion in a light-cured composite. J Dent Res. 1988;67,932-7.Search in Google Scholar

82. Bouschlicher MR., Rueggeberg FA., Wilson BM. Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent. 2004;29,698-704.Search in Google Scholar

83. Shortall AC., Harrington E., Wilson HJ. Light curing unit effectiveness assessed by dental radiometers. J Dent. 1995a.;23,227-32.Search in Google Scholar

84. Aguiar FH., Braceiro A., Lima DA., Ambrosano GM., Lovadino JR. Effect of light curing modes and light curing time on the microhardness of a hybrid composite resin. J Contemp Dent Pract. 2007;8,1-8.Search in Google Scholar

85. Leonard DL., Charlton DG., Hilton TJ. Effect of curing-tip diameter on the accuracy of dental radiometers. Oper Dent 1999;24,31-7.Search in Google Scholar

86. Roberts HW., Vandewalle KS., Berzins DW.& Charlton DG. Accuracy of LED and halogen radiometers using different light sources. J Esthet Restor Dent. 2006;18,214-22;discussion223-4.Search in Google Scholar

87. Hansen EK.& Asmussen E. Reliability of three dental radiometers. Scand J Dent Res. 1993;101,115-9.10.1111/j.1600-0722.1993.tb01099.x8456251Search in Google Scholar

eISSN:
2247-6113
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other