Open Access

In vitro assessment of the cytotoxic, DNA damaging, and cytogenetic effects of hydroquinone in human peripheral blood lymphocytes


1. Enguita FJ, Leitão AL. Hydroquinone: Environmental pollution, toxicity, and microbial answers. BioMed Res Int 2013;2013:542168. doi: 10.1155/2013/542168Search in Google Scholar

2. DeCaprio AP. The toxicology of hydroquinone-relevance to occupational and environmental exposure. Crit Rev Toxicol 1999;29:283-330. doi: 10.1080/10408449991349221Search in Google Scholar

3. Schindler G, Patzak U, Brinkhaus B, von Nieciecki A, Wittig J, Krähmer N, Glöckl I, Veit M. Urinary excretion and metabolism of arbutin after oral administration of Arctostaphylos uvae ursi extract as film-coated tablets. J Clin Pharmacol 2002;42:920-7. doi: 10.1177/009127002401102740Search in Google Scholar

4. European Medicines Agency. Assessment report on Arctostaphylos uva-ursi (L.) Spreng., folium, 2012 [displayed 14 November 2017]. Available at in Google Scholar

5. Jurica K, Gobin I, Kremer D, Vitali Čepo D, Jurišić Grubešić R, Brčić Karačonji I, Kosalec I. Arbutin and its metabolite hydroquinone as main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves. J Herb Med 2017;8:17-23. doi: 10.1016/j.hermed.2017.03.006Search in Google Scholar

6. Blaut M, Braune A, Wunderlich S, Sauer P, Schneider H, Glatt H. Mutagenicity of arbutin in mammalian cells after activation by human intestinal bacteria. Food Chem Toxicol 2006;44:1940-7. doi: 10.1016/j.fct.2006.06.015 Search in Google Scholar

7. United States - Food and Drug Administration (US-FDA). Hydroquinone [CAS 123-31-9] Supporting Information for Toxicological Evaluation by the National Toxicology Program, 2009 [displayed 14 November 2017]. Available at in Google Scholar

8. de Arriba SG, Naser B, Nolte KU. Risk assessment of free hidroquinone derived from Arctostaphylos Uva-ursi folium herbal preparations. Int J Toxicol 2013;32:442-56. doi: 10.1177/1091581813507721Search in Google Scholar

9. Roza L, de Vogel N, van Delft JHM. Lack of clastogenic effects in cultured human lymphocytes treated with hydroquinone. Food Chem Toxicol 2003;41:1299-305. doi: 10.1016/S0278-6915(03)00118-2Search in Google Scholar

10. Whysner J, Verna L, English JC, Williams GM. Analysis of studies related to tumorigenicity induced by hydroquinone. Regul Toxicol Pharmacol 1995;21:158-76. doi: 10.1006/ rtph.1995.1020Search in Google Scholar

11. IARC. Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum 1987;Suppl 7:1-440.Search in Google Scholar

12. Souček P, Ivan G, Pavel S. Effect of the microsomal system on interconversions between hydroquinone, benzoquinone, oxygen activation, and lipid peroxidation. Chem Biol Interact 2000;126:45-61. doi: 10.1016/S0009-2797(00)00155-1Search in Google Scholar

13. Turkez H, Aydın E, Geyikoglu F, Cetin D. Genotoxic and oxidative damage potentials in human lymphocytes after exposure to terpinolene in vitro. Cytotechnology 2015;67:409-18. doi: 10.1007/s10616-014-9698-zSearch in Google Scholar

14. Branica G, Mladinić M, Omanović D, Želježić D. An alternative approach to studying the effects of ZnO nanoparticles in cultured human lymphocytes: combining electrochemistry and genotoxicity tests. Arh Hig Rada Toksikol 2016;67:277-88. doi: 10.1515/aiht-2016-67-2910Search in Google Scholar

15. Valencia-Quintana R, Gómez-Arroyo S, Sánchez-Alarcón S, Milić M, Olivares JLG, Waliszewski SM, Cortés-Eslava J, Villalobos-Pietrini R, Calderón-Segura ME. Assessment of genotoxicity of Lannate-90® and its plant and animal metabolites in human lymphocyte cultures. Arh Hig Rada Toksikol 2016a;67:116-25. doi: 10.1515/aiht-2016-67-2763Search in Google Scholar

16. Valencia-Quintana R, Gómez-Arroyo S, Sánchez-Alarcón S, Milić M, Olivares JLG, Waliszewski SM, Cortés-Eslava J, Villalobos-Pietrini R, Calderón-Segura ME. Genotoxic effects of the carbamate insecticide Pirimor-50® in Vicia faba root tip meristems and human lymphocyte culture after direct application and treatment with its metabolic extracts. Arh Hig Rada Toksikol 2016b;67:266-76. doi: 10.1515/aiht-2016- 67-2809Search in Google Scholar

17. Petrović, S, Vasić V, Mitrović T, Lazović S, Leskovac, A. The impact of concentration and administration time on the radiomodulating properties of undecylprodigiosin in vitro. Arh Hig Rada Toksikol 2017;68:1-8. doi: 10.1515/aiht-2017- 68-2897Search in Google Scholar

18. Sreejaya SB, Archana D, Santhy KS. Genoprotective effects of Acorus calamus rhizome against DNA damage in peripheral blood lymphocytes. Int J Green Pharm 2017;11(Suppl):S108-11. doi: 10.22377/ijgp.v11i01.880Search in Google Scholar

19. Gasiorowski K, Brokos B, Kulma A, Ogorzałek A, Skórkowska K. A comparison of the methods applied to detect apoptosis in genotoxically-damaged lymphocytes cultured in the presence of four antimutagens. Cell Mol Biol Lett 2001;6:141-59. PMID: 11544636Search in Google Scholar

20. Kopjar N, Želježić D, Kosalec I, Bakmaz M, Jug M. Cytoprotectivity of plant extracts on doxorubicin and irinotecan-treated human peripheral blood lymphocytes. Planta Med 2007;73:507. doi: 10.1055/s-2007-987287Search in Google Scholar

21. Benković V, Knežević AH, Oršolić N, Bašić I, Ramić S, Viculin T, Knežević F, Kopjar N. Evaluation of radioprotective effects of propolis and its flavonoid constituents: in vitro study on human white blood cells. Phytother Res 2009;23:1159-68. doi: 10.1002/ptr.2774Search in Google Scholar

22. Benković V, Kopjar N, Horvat Knežević A, Đikić D, Bašić I, Ramić S, Viculin T, Knežević F, Oršolić N. Evaluation of radioprotective effects of propolis and quercetin on human white blood cells in vitro. Biol Pharm Bull 2008;31:1778-85. doi: 10.1248/bpb.31.1778Search in Google Scholar

23. Prasad NR, Jeyanthimala K, Ramachandran S. Caffeic acid modulates ultraviolet radiation-B induced oxidative damage in human blood lymphocytes. J Photochem Photobiol B 2009;95:196-203. doi: 10.1016/j.jphotobiol.2009.03.007Search in Google Scholar

24. Rusak G, Piantanida I, Masić L, Kapuralin K, Durgo K, Kopjar N. Spectrophotometric analysis of flavonoid-DNA interactions and DNA damaging/protecting and cytotoxic potential of flavonoids in human peripheral blood lymphocytes. Chem Biol Interact 2010;188:181-9. doi: 10.1016/j.cbi.2010.07.008Search in Google Scholar

25. Boligon AA, Sagrillo MR, Machado LF, de Souza Filho O, Machado MM, da Cruz IB, Athayde ML. Protective effects of extracts and flavonoids isolated from Scutia buxifolia Reissek against chromosome damage in human lymphocytes exposed to hydrogen peroxide. Molecules 2012;17:5757-69. doi: 10.3390/molecules17055757Search in Google Scholar

26. Grace Nirmala J, Evangeline Celsia S, Swaminathan A, Narendhirakannan RT, Chatterjee S. Cytotoxicity and apoptotic cell death induced by Vitis vinifera peel and seed extracts in A431 skin cancer cells. Cytotechnology 2017. doi: 10.1007/s10616-017-0125-0Search in Google Scholar

27. Sigma-Aldrich. Product Information Histopaque®-1077 [displayed 24 October 2017]. Available at in Google Scholar

28. Migliore L, Nieri M. Evaluation of twelve potential aneuploidogenic chemicals by the in vitro human lymphocyte micronucleus assay. Toxicol In Vitro 1991;5:325-36. doi: 10.1016/0887-2333(91)90009-3Search in Google Scholar

29. Robertson ML, Eastmond DA, Smith MT. Two benzene metabolites, catechol and hydroquinone, produce a synergistic induction of micronuclei and toxicity in cultured human lymphocytes. Mutat Res 1991;249:201-9. doi: 10.1016/0027-5107(91)90147-GSearch in Google Scholar

30. Van Hummelen P, Kirsch-Volders M. Analysis of eight known or suspected aneugens by the in vitro human lymphocyte micronucleus test. Mutagenesis 1992;7:447-55. doi: 10.1093/mutage/7.6.447Search in Google Scholar

31. Ferguson LR, Morcombe P, Triggs CN. The size of cytokinesis-blocked micronuclei in human peripheral blood as a measure of aneuploidy induction by Set A compounds in the EEC trial. Mutat Res 1993;287:101-12. doi: 10.1016/0027-5107(93)90149-ASearch in Google Scholar

32. Vian L, Van Hummelen P, Bichet N, Gouy D, Kirsch-Volders M. Evaluation of hydroquinone and chloral hydrate on the in vitro micronucleus test on isolated lymphocytes. Mutat Res 1995;334:1-7. doi: 10.1016/0165-1161(95)90024-1Search in Google Scholar

33. Andreoli C, Rossi S, Leopardi P, Crebelli R. DNA damage by hydroquinone in human white blood cells: analysis by alkaline single-cell gel electrophoresis. Mutat Res 1999;438:37-45. doi: 10.1016/S1383-5718(98)00160-0Search in Google Scholar

34. Lippoli Doepker C, Wonder Dumont K, O'Donoghue J, English JC. Lack of induction of micronuclei in human peripheral blood lymphocytes treated with hydroquinone. Mutagenesis 2000;15:479-87. doi: 10.1093/mutage/15.6.479Search in Google Scholar

35. Joksić G, Stanković M, Novak A. Antibacterial medicinal plants Equiseti herba and Ononidis radix modulate micronucleus formation in human lymphocytes in vitro. J Environ Pathol Toxicol Oncol 2003;22:41-8. doi: 10.1615/ JEnvPathToxOncol.v22.i1.40Search in Google Scholar

36. National Toxicology Program. Chemical Information Review Document for Arbutin [CAS No. 497-76-7] and Extracts from Arctostaphylos uva-ursi. Natl Toxicol Progr 2006 [displayed 15 November 2017]. Available at in Google Scholar

37. Fenech M. The in vitro micronucleus technique. Mutat Res 2000;455:81-95. doi: 10.1016/S0027-5107(00)00065-8Search in Google Scholar

38. Duke RC, Cohen JJ. Morphological and biochemical assays of apoptosis. In: Coligan JE, Kruisbeal AM, editors. Current protocols in immunology. New York: John Willey and Sons; 1992. p. 1-3.Search in Google Scholar

39. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184-91. doi: 10.1016/0014-4827(88)90265-0Search in Google Scholar

40. Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutat Res 1985;147:29-36. doi: 10.1016/0165- 1161(85)90015-9Search in Google Scholar

41. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger, E. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 2003;534:65-75. doi: 10.1016/S1383-5718(02)00249-8Search in Google Scholar

42. Eastmond DA, Tucker JD. Identification of aneuploidyinducing agents using tokinesis-blocked human lymphocytes and an anti-kinetochore antibody. Environ Mol Mutagen 1989;13:34-43. doi: 10.1002/em.2850130104Search in Google Scholar

43. McDonald TA, Holland NT, Skibola C, Duramad P, Smith MT. Hypothesis: phenol and hydroquinone derived mainly from diet and gastrointestinal flora activity are causal factors in leukemia. Leukemia 2001;15:10-20. PMID 11243376 10.1038/sj.leu.240198111243376Search in Google Scholar

44. Jurica K, Brčić Karačonji I, Šegan S, Milojković Opsenica D, Kremer D. Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry. Arh Hig Rada Toksikol 2015;66:197-202. doi: 10.1515/aiht- 2015-66-2696Search in Google Scholar

45. Wen AH, Choi MK, Kim DD. Formulation of liposome for topical delivery of arbutin. Arch Pharm Res 2006;29:1187-92. doi: 10.1007/BF02969312Search in Google Scholar

46. Thongchai W, Liawruangrath B, Liawruangrath S. Highperformance liquid chromatographic determination of arbutin in skin-whitening creams and medicinal plant extracts. J Cosmet Sci 2007;58:35-44. doi: 10.1111/j.1468-2494.2007.00391_4.xSearch in Google Scholar

47. Zhu W, Gao J. The use of botanical extracts as topical skinlightening agents for the improvement of skin pigmentation disorders. J Investig Dermatol Symp Proc 2008;13:20-4. doi: 10.1038/jidsymp.2008.8Search in Google Scholar

48. Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin-lightening agents - existing and new approaches. Int J Cosmet Sci 2011;33:210-21. doi: 10.1111/j.1468-2494. 2010.00616.xSearch in Google Scholar

49. Yusuf, I, Fruman DA. Regulation of quiescence in lymphocytes. Trends Immunol 2003;24:380-6. doi: 10.1016/ S1471-4906(03)00141-8Search in Google Scholar

50. Yao G. Modelling mammalian cellular quiescence. Interface Focus 2014;4:20130074. doi: 10.1098/rsfs.2013.0074Search in Google Scholar

51. Hiraku Y, Kawanishi S. Oxidative DNA damage and apoptosis induced by benzene metabolites. Cancer Res 1996;56:5172-8. PMID 8912853Search in Google Scholar

52. Inayat-Hussain SH, Winski SL, Ross D. Differential involvement of caspases in hydroquinone-induced apoptosis in human leukemic hl-60 and jurkat cells. Toxicol Appl Pharmacol 2001;175:95-103. doi: 10.1006/taap.2001.9221Search in Google Scholar

53. Terasaka H, Morshed SR, Hashimoto K, Sakagami H, Fujisawa S. Hydroquinone-induced apoptosis in HL-60 cells. Anticancer Res 2005;25:161-70. PMID 15816534 Search in Google Scholar

54. Yang EJ, Lee JS, Yun CY, Kim IS. The pro-apoptotic effect of hydroquinone in human neutrophils and eosinophils. Toxicol in Vitro 2011;25:131-7. doi: 10.1016/j.tiv.2010.10.004Search in Google Scholar

55. Lee JS, Yang EJ, Kim IS. Hydroquinone-induced apoptosis of human lymphocytes through caspase 9/3 pathway. Mol Biol Rep 2012;39:6737-43. doi: 10.1007/s11033-012-1498-ySearch in Google Scholar

56. Olive PL. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int J Radiat Biol 1999;75:395-405. doi: 10.1080/095530099140311 Search in Google Scholar

57. Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 2004;26:249-61. doi: 10.1385/MB:26:3:249Search in Google Scholar

58. Azqueta A, Slyskova J, Langie SA, O'Neill Gaivão I, Collins A. Comet assay to measure DNA repair: approach and applications. Front Genet 2014;5:288. doi: 10.3389/ fgene.2014.00288Search in Google Scholar

59. Andreoli C, Leopardi P, Crebelli R. Detection of DNA damage in human lymphocytes by alkaline single cell gel electrophoresis after exposure to benzene or benzene metabolites. Mutat Res 1997;377:95-104. doi: 10.1016/S0027-5107(97)00065-1Search in Google Scholar

60. Buschfort C, Muller M, Seeber S, Rajewsky MF, Thomale J. DNA excision repair profiles of normal and leukemic human lymphocytes: functional analysis at the single-cell level. Cancer Res 1997;57:651-8. PMID 9044842 Search in Google Scholar

61. Thomale J, Müller MR, Buschfort C, Seeber S, Rajewsky MF. Alterations in DNA repair: Implications for leukemia cell biology. In: Hiddemann W, Büchner T, Wörmann B, editors. Acute leukemias VII. Haematology and blood transfusion/hämatologie und bluttransfusion. Vol 39. Berlin: Heidelberg:Springer; 1998. p. 3-12.10.1007/978-3-642-71960-8_1Search in Google Scholar

62. Benítez-Bribiesca L, Sánchez P, Toledo J, Peñarroja R, Flores M, Sosa J. Differential staining of DNA strand breaks in dried comet assay slides. J Histochem Cytochem 2001;49:921-2. doi: 10.1177/002215540104900713Search in Google Scholar

63. Buschfort-Papewalis C, Moritz T, Liedert B, Thomale J. Down-regulation of DNA repair in human CD34(+) progenitor cells corresponds to increased drug sensitivity and apoptotic response. Blood 2002;100:845-53. doi: 10.1182/blood-2002-01-0022Search in Google Scholar

64. Amin RP, Witz G. DNA-protein crosslink and DNA strand break formation in HL-60 cells treated with trans,transmuconaldehyde, hydroquinone and their mixtures. Int J Toxicol 2001;20:69-80. doi: 10.1080/10915810151115173Search in Google Scholar

65. Luo L, Jiang L, Geng C, Cao J, Zhong L. Hydroquinoneinduced genotoxicity and oxidative DNA damage in HepG2 cells. Chem Biol Interact 2008;173:1-8. doi: 10.1016/j. cbi.2008.02.002Search in Google Scholar

66. Frantz CE, Chen H, Eastmond DA. Inhibition of human topoisomerase II in vitro by bioactive benzene metabolites. Environ Health Perspect 1996;104(Suppl 6):1319-23. PMCID: PMC146975610.1289/ehp.961041319Search in Google Scholar

67. Fung J, Hoffmann MJ, Kim DD, Snyder R. Inhibition of topoisomerase II in 32D.3(G) cells by hydroquinone is associated with cell death. J Appl Toxicol 2004;24:183-8. doi: 10.1002/jat.960Search in Google Scholar

68. Lindsey RH, Bender RP, Osheroff N. Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison. Chem Res Toxicol 2005;18:761-70. doi: 10.1021/ tx049659zSearch in Google Scholar

69. Kettle AJ, Winterbourn CC. Oxidation of hydroquinone by myeloperoxidase. Mechanism of stimulation by benzoquinone. J Biol Chem 1992;267:8319-24. PMID 131482210.1016/S0021-9258(18)42445-3Search in Google Scholar

70. Chenna A, Hang B, Rydberg B, Kim E, Pongracz K, Bodel WJ, Singer B. The benzene metabolite p-benzoquinone forms adducts with DNA bases that are excised by a repair activity from human cells that differs from an ethenoadenine glycosylase. Proc Natl Acad Sci USA 1995;92:5890-4. doi: 10.1073/pnas.92.13.5890Search in Google Scholar

71. Do Céu Silva M, Gaspar J, Duarte Silva I, Leão D, Rueff J. Mechanisms of induction of chromosomal aberrations by hydroquinone in V79 cells. Mutagenesis 2003;18:491-6. doi: 10.1093/mutage/geg029Search in Google Scholar

72. Fenech M. Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res 2006;600:58-66. doi: 10.1016/j.mrfmmm.2006.05.028Search in Google Scholar

73. Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 2011;26:125-32. doi: 10.1093/mutage/ geq052Search in Google Scholar

74. Yager JW, Eastmond DA, Robertson ML, Paradisin WM, Smith MT. Characterization of micronuclei induced in human lymphocytes by benzene metabolites. Cancer Res 1990;90:393-9. PMID 2295079Search in Google Scholar

75. Irons RD, Neptun DA, Pfeifer RW. Inhibition of lymphocyte transformation and microtubule assembly by quinone metabolites of benzene. Evidence for a common mechanism. J Reticuloendothel Soc 1981;30: 359-72. PMID 7320996Search in Google Scholar

76. Denny BJ. Quinones: reactions with hemoglobin, effects within erythrocytes and potential for antimalarial Western Reserve University; 1986.Search in Google Scholar

77. Kakhniashvili DG. The human erythrocyte proteome: analysis by ion trap mass spectrometry. Mol Cell Proteomics 2004;3:501-9. doi: 10.1074/mcp.M300132-MCP200Search in Google Scholar

78. McDonald TA, Waidyanatha S, Rappaport SM. Measurement of adducts of benzoquinone with hemoglobin and albumin. Carcinogenesis 1993;14:1927-32. doi: 10.1093/ carcin/14.9.1927Search in Google Scholar

79. Waidyanatha S, Yeowell-O’Connell K, Rappaport SM. A new assay for albumin and hemoglobin adducts of 1,2- and 1,4-benzoquinones. Chem Biol Interact 1998;115:117-39. PMID 982694510.1016/S0009-2797(98)00067-2Search in Google Scholar

80. Boatman RJ, English JC, Perry LG, Fiorica LA. Covalent protein adducts of hydroquinone in tissues from rats: identification and quantitation of sulfhydryl-bound forms. Chem Res Toxicol 2000;13:853-60. doi: 10.1021/tx000037xSearch in Google Scholar

81. Bittner S. When quinones meet amino acids: chemical, physical and biological consequences. Amino Acids 2006;30:205-24. doi: 10.1007/s00726-005-0298-2Search in Google Scholar

82. Yamauchi A, Hatanaka Y, Muro T, Kobayashi O. Enzyme-free quinone crosslinking reaction for proteins: a macromolecular characterization study using gelatin. Macromol Biosci 2009;9:875-83. doi: 10.1002/mabi.200900032Search in Google Scholar

English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other