1. bookVolume 67 (2016): Issue 3 (September 2016)
Journal Details
License
Format
Journal
eISSN
1848-6312
First Published
26 Mar 2007
Publication timeframe
4 times per year
Languages
English
Open Access

Phytoremediation potential of wild plants growing on soil contaminated with heavy metals

Published Online: 15 Oct 2016
Volume & Issue: Volume 67 (2016) - Issue 3 (September 2016)
Page range: 229 - 239
Received: 01 May 2016
Accepted: 01 Sep 2016
Journal Details
License
Format
Journal
eISSN
1848-6312
First Published
26 Mar 2007
Publication timeframe
4 times per year
Languages
English

1. Mühlbachová G, Száková J, Tlustoš P. The heavy metal availability in long-term polluted soils as affected by EDTA and alfalfa meal treatments. Plant Soil Environ 2012;58:551-6. [displayed 4 August 2016]. Available at http://www.agriculturejournals.cz/publicFiles/78767.pdf10.17221/524/2012-PSESearch in Google Scholar

2. Vidaković-Cifrek Ž, Tkalec M, Šikić S, Tolić S, Lepeduš H, Pevalek-Kozlina B. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper. Arh Hig Rada Toksikol 2015;66:141-52. doi: 10.1515/aiht-2015-66-2618Search in Google Scholar

3. Wong MH. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003;50:775-80. doi: 10.1016/S0045-6535(02)00232-1Search in Google Scholar

4. Freitas H, Prasad MNV, Pratas J. Plant community tolerant to trace elements growing on the degraded soils of Sao Domingos mine in the south east of Portugal: environmental implications. Environ Int 2004;30:65-72. doi: 10.1016/ S0160-4120(03)00149-1Search in Google Scholar

5. Del Rio-Celestino M, Font R, Moreno-Rojas R, De Haro- Bailon A. Uptake of lead and zinc by wild plants growing on contaminated soils. Ind Crop Prod 2006;24:230-37. doi: 10.1016/j.indcrop.2006.06.013Search in Google Scholar

6. Moors HME, DijkemaPJG. Embedded industrial production systems: Lessons from waste management in zinc production. Technol Forecast Soc 2006;73:250-65.doi: 10.1016/j. techfore.2004.03.006Search in Google Scholar

7. Bozkurt S. Assessment of the Long-Term Transport Processes and Chemical Evolution in Waste Deposits. [PhD thesis]. Stockholm: Royal Institute of Technology; 2000.Search in Google Scholar

8. Bolan N, Kunhikrishnanc A, Thangarajana R, Kumpiened J, Parke J, Makinof T, Kirkhamg BM, Scheckelh K. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? J Hazard Mater 2014;266:141-66. doi: 10.1016/j.jhazmat.2013.12.018Search in Google Scholar

9. Rosselli W, Keller C, Boschi K. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 2003;256:265-72. doi: 10.1023/A:1026100707797Search in Google Scholar

10. Madejón P, Murillo JM, Marañón T, Cabrera F, López R. Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcollar mine spill (SW Spain). Sci Total Environ 2002;290:105-20. doi: 10.3184/095422914X14141 630849689Search in Google Scholar

11. Yoon J, Cao X, Zhou Q, Ma QL. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 2006;368:456-64. doi: 10.1016/j. scitotenv.2006.01.016Search in Google Scholar

12. ZayedМА, Terry N. Chromium in the environment: factors affecting biological remediation. Plant Soil 2003;249:139-56. doi: 10.1023/A:1022504826342Search in Google Scholar

13. Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metal elements: a review of their distribution, ecology, and phytochemistry. Biorecovery 1989;1:81-126.Search in Google Scholar

14. Antonkiewicz J, Para A. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals. Int J Phytoremediation 2016;18:245-50. doi: 10.1080/15226514.2015.1078771Search in Google Scholar

15. Robinson B, Schulin R, Nowak B, Roulier S, Menon M, Clothier B, Green S, Mills T. Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 2006;80:221-34.Search in Google Scholar

16. España-Gamboa E, Mijangos-Cortes J, Barahona-Perez L, Dominguez-Maldonado J, Hernandez-Zarate G, Alzate- GaviriaLj. Vinasses: characterization and treatments. Waste Manag Res 2011;29:1235-50. doi: 10.1177/0734242X 10387313Search in Google Scholar

17. Pulford ID, Watson C. Phytoremediation of heavy metal contaminated land by trees - a review. Environ Int 2003;29:529-40. doi: 10.1016/S0160-4120(02)00152-6Search in Google Scholar

18. Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson MN, Mosca G. Phytoremediation trials on metal- and arseniccontaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 2009;157:887-94. doi 10.1016/j.envpol.2008.11.00310.1016/j.envpol.2008.11.00319073356Search in Google Scholar

19. Obernberger I, Supancic K. Possibilities of ash utilisation from biomass combustion plants. In: Proceedings of the 17th European Biomass Conference & Exhibition, From Research to Industry and Markets; 29 June - 3 July 2009; Hamburg, Germany. Florence: ETA-Florence Renewable Energies; 2009. p. 2373-84.Search in Google Scholar

20. Van Eijk RJ, Obernberger I, Supancic K. Options for increased utilization of ash from biomass combustion and co-firing, 30102040-PGR/R&E 11-2142, IEA Bioenergy Task 32, Deliverable D4, 2012. [displayed 05 May 2014]. Available at http://www.ieabcc.nl/publications/Ash_Utilization_KEMA.pdfSearch in Google Scholar

21. Obernberger I, Brunner T, Bärnthaler G. Chemical properties of solid biofuels - significance and impact. Biomass Bioenerg 2006;30:973-82. doi: 10.1016/j.biombioe.2006.06.011Search in Google Scholar

22. JovanovićLj, Marković M, Stojiljković D, Radovanović M, Cupać S, Despotović S, Ilić S, Drazić D, Bojović S. Usage of crops and wild plants growing on polluted soil as an energy source. In: Procceeding of the 2nd World Conference on Biomass for Energy, Industry and Climate Protection; 10-14 May 2004; Roma, Italy 2004. ETA-Florence, Italy and WIPMunich, Germany 2004. p. 2529-33.Search in Google Scholar

23. Avramov L, Nakalamić A, Todorović N, Petrović N, Žunić D. Climate of the vineyard zones and the associated vine varieties of Yugoslavia. J AgricSci (Belgrade) 2000;45:29-35. doi: 10.2298/JAS0601061PSearch in Google Scholar

24. U.S. Environmental Protection Agency (US EPA). Method 3050b; Acid Digestion of Sediments, Sludges, and Soils. Washington (DC): U.S. EPA; 1996.Search in Google Scholar

25. U.S. Environmental Protection Agency (US EPA). Method 200.7; Trace Elements in Water, Solids and Biosolids by Inductively Coupled Plasma-Atomic Emission Spectrometry, ICP-OES. Washington (DC): U.S. EPA; 2001.Search in Google Scholar

26. SRPS EN ISO 11885:2011 - Water quality - Determination of selected elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). Belgrade: Institute for Standardization of Serbia; 2011.Search in Google Scholar

27. SRPS EN ISO 11969:2009 - Water quality - Determination of arsenic - Atomic absorption spectrometric method (hydride technique). Belgrade: Institute for Standardization of Serbia; 2009Search in Google Scholar

28. EN 14780:2011 - Solid biofuels - Methods for sample preparation. Brussels: European Standardization Organizations; 2011.Search in Google Scholar

29. EN 14775:2011 - Solid biofuels - Determination of ash content. Brussels: European Standardization Organizations; 2011.Search in Google Scholar

30. ISO 1171:2010 - Solid mineral fuels - Determination of ash. Geneva: International Organization for Standardization; 2010.Search in Google Scholar

31. Dare P, Gifford H, Hooper JR, Clemens HA, Damiano FL, Gong D, Matheson WT. Combustion performance of biomass residue and purpose grown species. Biomass Bioenerg 2001;21:277-87. doi: 10.1016/S0961-9534(01)00039-3Search in Google Scholar

32. EN 14918:2009 - Solid biofuels - Determination of calorific value. Brussels: European Standardization Organizations; 2009.Search in Google Scholar

33. SRPS EN 15104:2012 - Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen - Instrumental methods. Belgrade, Institute for Standardization of Serbia; 2012.Search in Google Scholar

34. Uredba o programu sistemskog praćenja kvaliteta zemljišta, indikatorima za ocenu rizika od degradacije zemljišta i metodologiji za izradu remedijacionih programa.[Regulation on a program of systematic monitoring of soil quality, indicators for assessing the risk of soil degradation and methodology for development of remediation programs, in Serbian]. Službeni glasnik RS 88/2010.Search in Google Scholar

35. Crnković MD. Analiza uticaja prisutnih teških metala I policikličnih aromatičnih ugljovodonika na kvalitet zemljišta u Beogradu [Analysis of the impact of present trace metals and polycyclic aromatic hydrocarbons on the soil quality in Belgrade, in Serbian]. [MSc thesis]. Belgrade: University of Belgrade, Faculty of Technology and Metallurgy; 2005.Search in Google Scholar

36. Mertens J, Vervaeke P, De Schrijver A, Luyssaert S. Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Sci Total Environ 2004;326:209-15. doi: 10.1016/j.scitotenv.2003.12.010Search in Google Scholar

37. Laureysens I, Blust R, De Temmerman L, Lemmens C, Ceulemans R. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut 2004;131:485-94. doi: 10.1016/j. envpol.2004.02.009Search in Google Scholar

38. Sebastiani L, Scebba F, Tognetti R. Heavy metal accumulation and growth responses in poplar clones Eridano (Populusdeltoides ˟ maximowiczii) and I-214 (P. ˟ euramericana) exposed to industrial waste. Environ Exp Bot 2004;52:79-88. doi: 10.1016/j.envexpbot.2004.01.003Search in Google Scholar

39. Laureysens I, Pellis A, Willems J, Ceulemans R. Growth and production of a short rotation coppice culture of poplar. III. Second rotation results. Biomass Bioenerg 2005;29:10-21. doi: 10.1016/j.biombioe.2005.02.005Search in Google Scholar

40. Yang X, Feng Y, He Z, StoffellaPJ. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 2005;18:339-53. doi: 10.1016/j. jtemb.2005.02.007Search in Google Scholar

41. Brunner I, Luster J, Günthardt-Goerg MS, Frey B. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 2008;152:559-68. doi: 10.1016/j.envpol.2007.07.006Search in Google Scholar

42. Wang Z, MacFarlane WD. Evaluating the biomass production of coppiced willow and poplar clones in Michigan, USA, over multiple rotations and different growing conditions. Biomass Bioenerg 2012:46:380-8. doi: 10.1016/j. biombioe.2012.08.003Search in Google Scholar

43. Kfayatullah Q, Tahir Shah M, Arfan M. Biogeochemical and environmental study of the chromite-rich ultramafic terrain of Malakand area, Pakistan. Environ Geol 2001;40:1482-6. doi: 10.1007/s002540100374Search in Google Scholar

44. Freitas H, Prasad MNV, Pratas J. Analysis of serpentinophytes from north-east of Portugal for trace metal accumulationrelevance to the management of mine environment. Chemosphere 2004;54:1625-42. doi: 10.1016/j. chemosphere.2003.09.045Search in Google Scholar

45. Arslan H, Güleryüz G, Leblebici Z, Kırmızı S, Aksoy A. Verbascum bombyciferum Boiss. (Scrophulariaceae) as possible bio-indicator for the assessment of heavy metals in the environment of Bursa, Turkey. Environ Monit Assess 2010;163:1105-13. doi 10.1007/s10661-009-0820-110.1007/s10661-009-0820-119274485Search in Google Scholar

46. Antonkiewicz J, Kołodziej B, Bielińska E. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ Sci Pollut Res Int 2016;23:9505-17. doi: 10.1007/s11356-016-6175-6Search in Google Scholar

47. Narodoslawsky M, Obernberger I. From waste to raw material - the route from biomass to wood ash for cadmium and other heavy metals. J Hazard Mater 1996:50:157-68. doi: 10.1016/0304-3894(96)01785-2Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo